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Introduction

The following sections introduce Model-Based Calibration Toolbox™ software.

Product Overview (p. 1-2) Introducing Model-Based
Calibration Toolbox software.

How to Use This Manual (p. 1-5) For information on learning and
using the toolbox, this section
contains an overview of this manual
with links to the tutorials and
reference sections.

System Requirements (p. 1-8) Hardware and operating system
requirements, and required
and optional products from The
MathWorks.



1 Introduction

Product Overview
This section contains the following topics:

In this section...

“About the Model Browser” on page 1-2

“About CAGE” on page 1-3

The Model-Based Calibration Toolbox™ product contains tools for design of
experiment, statistical modeling, and calibration of complex systems. It has
two main user interfaces:

• Model Browser for design of experiment and statistical modeling

• CAGE Browser for analytical calibration

The Model Browser part of the toolbox is a powerful tool for experimental
design and statistical modeling. The models you build with the Model Browser
can be imported into the CAGE Browser part of the toolbox to produce
optimized calibration tables.

High accuracy engine models are a key component for reducing calibration
effort and engine development time.

The time spent calibrating an engine control unit has been increasing, due
to new control actuators. The new actuators give the potential for increased
performance, reduced emissions, and improved fuel consumption. It is
necessary to apply advanced modeling and optimization techniques to achieve
the full benefits available from the addition of new actuators. Advanced
modeling techniques offer increased understanding of the complex, nonlinear
engine responses. High accuracy models can be used throughout the design
process, including the calibration of base maps with the optimal settings for
the control parameters, determined by constrained optimizations.

About the Model Browser
The Model Browser is a flexible, powerful, intuitive graphical interface for
building and evaluating experimental designs and statistical models:
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• Design of experiment tools can drastically reduce expensive data collection
time.

• You can create and evaluate optimal, space-filling, and classical designs,
and constraints can be designed or imported.

• Hierarchical statistical models can capture the nature of variability
inherent in engine data, accounting for variation both within and between
tests.

• The Model Browser has powerful, flexible tools for building, comparing, and
evaluating statistical models and experimental designs.

• There is an extensive library of prebuilt model types and the capability to
build user-defined models.

• You can export models to CAGE or to MATLAB® or Simulink® software.

Starting the Model Browser
To start the application, type

mbcmodel

at the MATLAB command prompt.

About CAGE
CAGE (CAlibration GEneration) is an easy-to-use graphical interface for
calibrating lookup tables for your electronic control unit (ECU).

As engines get more complicated, and models of engine behavior more
intricate, it is increasingly difficult to rely on intuition alone to calibrate
lookup tables. CAGE provides analytical methods for calibrating lookup
tables.

CAGE uses models of the engine control subsystems to calibrate lookup
tables. With CAGE, you fill and optimize lookup tables in existing ECU
software using Model Browser models. From these models, CAGE builds
steady-state ECU calibrations.

CAGE also compares lookup tables directly to experimental data for
validation.
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Starting the CAGE Browser
To start the application, type

cage

at the MATLAB command prompt.
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How to Use This Manual
This section contains the following topics:

In this section...

“Learning the Model-Based Calibration Toolbox™ Product” on page 1-5

“Learning the Model Browser” on page 1-5

“Learning CAGE” on page 1-7

“Training Material” on page 1-7

Learning the Model-Based Calibration Toolbox™
Product
The case studies chapters contain step-by-step examples that guide you
through using the whole toolbox to solve engine modeling and calibration
problems:

• Chapter 2, “Gasoline Engine Calibration Case Study”

• Chapter 3, “Diesel Engine Calibration Case Study”

The following tutorial chapter explains how to get started using the
command-line interface to the toolbox:

• Chapter 4, “Command-Line Interface to the Model-Based Calibration
Toolbox™ Product”

Learning the Model Browser
These tutorials guide you through using specific Model Browser tools:

• Chapter 5, “Tutorial: Model Quickstart ” provides a quick introduction to
modeling with the toolbox. The tutorial describes how to set up and view a
two-stage model using engine data.

• Chapter 6, “Tutorial: Design of Experiment” covers the tools for Design
of Experiments with a step-by-step guide to setting up, viewing, and
comparing one of each of the design types: classical, space-filling, and
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optimal. The tutorial also describes how to define and apply constraints
and export designs.

• Chapter 7, “Tutorial: Data Editor” is a guide to using the Data Editor to
load and manipulate data for modeling. You can load data from files or
the workspace or custom Microsoft® Excel® sheets. You can view plots of
the data and define new variables and filters. You can store and import
user-defined variables and filters, and define test groupings.
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Learning CAGE
These tutorials guide you through using specific tools in CAGE:

• Chapter 8, “Tutorial: Feature Calibration” describes how to set up and
calibrate lookup tables by reference to a model.

• Chapter 9, “Tutorial: Tradeoff Calibration” describes how to calibrate
lookup tables using tradeoff calibrations.

• Chapter 10, “Tutorial: Data Sets” describes how to validate calibrations
using experimental data.

• Chapter 11, “Tutorial: Filling Tables from Data” describes how to fill
lookup tables using experimental data.

• Chapter 12, “Tutorial: Optimization and Automated Tradeoff” describes
how to set up and run optimizations, including single objective,
multiobjective, sum and user-defined optimization, and automated tradeoff.

Training Material
The files for the tutorial chapters are in the
matlabroot/toolbox/mbc/mbctraining directory.
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System Requirements
This section lists the following:

• Operating system requirements

• Required MathWorks products

• Optional MathWorks products

Operating System Requirements
The Model-Based Calibration Toolbox™ product is a Windows® 32-bit PC
only product.

You can see the MATLAB® system requirements online at
http://www.mathworks.com/products/system.shtml/Windows

Required MathWorks Products
The Model-Based Calibration Toolbox product requires the following other
MathWorks products:

• Simulink®

• Optimization Toolbox™

• Statistics Toolbox™

• Extended Symbolic Math Toolbox™

Optional MathWorks Products
The Model-Based Calibration Toolbox product can use the following
MathWorks products:

• Parallel Computing Toolbox™

• Neural Network Toolbox™

• Genetic Algorithm and Direct Search Toolbox™

1-8
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System Requirements

Note If you want to import Microsoft® Excel® files or use the custom Excel®
file facility of the toolbox, you must also have theMicrosoft Excel application.
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Gasoline Engine Calibration
Case Study

This case study provides a step-by-step guide to using the Model-Based
Calibration Toolbox™ product to solve a gasoline engine calibration problem.
This section discusses the following topics:

Gasoline Case Study Overview
(p. 2-3)

In this case study, you use the Model
Browser for designing experiments,
handling data, and creating,
comparing and selecting models.
You use these models in CAGE
to generate optimized calibration
tables.

Designing the Experiment (p. 2-7) Creating a modeling test plan and
constrained candidate designs for
data collection.

Importing and Filtering Data
(p. 2-18)

Using the Data Editor to import,
view and filter data for modeling.

How Is a Two-Stage Model
Constructed? (p. 2-27)

An explanation of the way local,
global and two-stage models are
constructed and relate to each other.

Building the Models (p. 2-31) Building an initial model.

Selecting Local Models (p. 2-40) Inspecting and improving local
models.

Creating Boundary Models (p. 2-44) Creating a boundary model to
describe the limits of the data
collection envelope.
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Selecting Global and Two-Stage
Models (p. 2-48)

Creating and comparing multiple
global models, creating two-stage
models, and adding new response
models.

Using Validation Data (p. 2-59) Validating models with additional
data.

Exporting the Models (p. 2-62) Exporting the models for use in
optimized calibration

Optimized Calibration (p. 2-63) You use CAGE to create an optimized
calibration based on the models
exported from the Model Browser.
This section is an overview of the
required steps and the benefits of
automated calibration.

Importing Models into CAGE
(p. 2-66)

Importing models into CAGE.

Setting Up Calibration Tables to Fill
(p. 2-69)

Creating and duplicating tables to
fill with optimization results.

Setting Up the Optimization (p. 2-72) Using the Optimization Wizard to
set up the optimization.

Defining Variable Values (p. 2-77) Defining the operating points where
you want the optimization to run.

Running the Optimization (p. 2-81) Running the optimization and
viewing the results.

Setting Up the Sum Optimization
(p. 2-84)

Duplicating and modifying the
existing optimization for the sum
problem.

Filling Tables with Optimization
Results (p. 2-91)

Filling tables with the results of the
optimization.

MBT Spark Estimator Problem
(p. 2-93)

Using the Feature Fill Wizard to
fill the tables of a spark estimator
feature.
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Gasoline Case Study Overview

In this section...

“Case Study Introduction” on page 2-3

“Why Use Design of Experiment and Engine Modeling?” on page 2-4

“Problem Definition” on page 2-5

“Introduction to Two-Stage Modeling” on page 2-6

Case Study Introduction
This case study demonstrates how to systematically develop a set of optimal
steady-state engine calibration tables using the Model-Based Calibration
Toolbox™ product. This case-study uses a 2.2L inline 4 cylinder, naturally
aspirated DOHC (Dual Overhead Cams) 4 valve per cylinder spark ignition
(SI) engine equipped with dual-independent variable cam-phasing (DIVCP)
hardware and electronic throttle.

Optimal steady-state engine calibration tables for intake cam phase, exhaust
cam phase, and spark advance are developed as part of the case study process.

This example takes you through the following steps:

1 Create a design for your experiment — see “Designing the Experiment”
on page 2-7.

2 Import the resulting data (taken using the design) to examine and filter
it in preparation for modeling — see “Importing and Filtering Data” on
page 2-18.

3 Make statistical models based on the data.

a “How Is a Two-Stage Model Constructed?” on page 2-27

b “Building the Models” on page 2-31

c “Selecting Local Models” on page 2-40

d “Creating Boundary Models” on page 2-44

e “Selecting Global and Two-Stage Models” on page 2-48
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f “Using Validation Data” on page 2-59

4 Export these models to the CAGE part of the toolbox to generate optimal
calibration tables — see “Exporting the Models” on page 2-62.

5 The Model Browser section of the case study involves design of experiment,
data handling, and model construction and export. In the CAGE browser
section of the case study you use the models to complete the optimization of
the calibration tables, see “Optimized Calibration” on page 2-63.

The following sections introduce the benefits of applying model-based
calibration methods to solve this case study problem:

• “Why Use Design of Experiment and Engine Modeling?” on page 2-4

• “Problem Definition” on page 2-5

• “Introduction to Two-Stage Modeling” on page 2-6

Why Use Design of Experiment and Engine Modeling?
These approaches can be used to ensure that you develop optimal engine
calibrations for complex engines with many controllable variables (such
as variable valve timing, variable valve lift, and cylinder deactivation) at
minimum cost and time.

Test bed time is expensive, and Design of Experiments methodology can help
you choose the most effective points to run to get the maximum information
in the shortest time. You can break the exponential dependency between the
complexity of the engine (number of inputs) and the cost of testing (number
of tests). You can collect the most statistically useful data, and just enough
of it to fit the models.

Experimental design test points can be constrained based on previous
experience to avoid damaging expensive engine hardware prototypes at
unrealistic operating points.

The act of statistically modeling engine data can help identify the effect of
interactions between calibration settings and engine performance, which can
be vital to understanding how to optimally meet emissions constraints.
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Accurate statistical models of engine data can also be used to develop
calibration tables that have smooth transitions between the operating range
of the engine and the edge regions of calibration tables where the engine
will not be operated.

Optimal calibrations can be generated from statistical engine models in a
methodical, repeatable process to ensure that maximum performance is
achieved subject to emissions, driveability, and material limit constraints.

Problem Definition
The aim of this case study is to produce optimized tables for

• Intake Cam Phase

• Exhaust Cam Phase

• Spark Timing Schedules

as a function of Load and rpm, subject to the following constraints

- Constrain solutions to lie within the boundary constraint model (to keep
the engine within its operating region)

- Constrain cam phase solutions so they do not change by more than 10o

between table cells (that is, no more than 10o per 500 RPM change and
per 0.1 load change).

- Constrain residual fraction <= 25% at each drive cycle point (to ensure
stable combustion). Residual fraction is the percentage of burned gas
mass in the cylinder at intake valve close, relative to the total mass
in the cylinder at intake valve close. Constraining maximum residual
fraction is a simple and reasonable way of ensuring stable combustion.
Residual fraction = 100 * Burned Gas Mass from Last Cycle / (Burned
Gas Mass From Last Cycle + Fresh Air Mass)

To produce these tables, you need to make accurate models of the behavior
of torque, exhaust temperature, and residual fraction at different values of
speed, throttle area, spark, and cam timings. You need engine data to build
these models, so the first step is constructing an experimental design to collect
the most useful set of points.
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Before you can design an experiment you need to set up a two-stage test plan
and define your model inputs and model type.

Introduction to Two-Stage Modeling
What is a two-stage test plan? You use a test plan to set up models in the
Model Browser. The two stages refer to the way that engine data is often
collected. For example, in each test, spark (the local variable) is swept while
the other variables (such as speed and load) are held constant — these are
referred to as global variables. Each test is taken at a different point in the
global variables. Building the statistical models to take into account these
individual sweeps makes it possible to incorporate engineering knowledge in
the process. You can see plots of torque/spark sweeps, and use variables such
as MBT (maximum brake torque) in modeling, rather than solely abstract
mathematical properties of curves. You can then apply previous knowledge
about the expected behavior of these variables to help you select good models.

You can easily identify outliers when you can see the sweep in which they
were taken. The Model Browser allows you to visualize the data in a way
that can help you identify and investigate suspect sweeps, and decide what
kind of models will produce the best fit to the shapes of the data. The more
controllable variables there are in an engine the more useful it is to have
these visual aids to investigate complex data. Constructing models to take
into account the way the data is collected helps build good models that you
can have more confidence in. Statistically, it is the correct thing to do as
it allows you to partition the errors within sweeps and the errors between
sweeps separately.

You use a two-stage test plan to build your models because this data is
suited to it. Spark is varied as the other variables are held constant, so the
data is collected in a hierarchical structure; your models attempt to capture
this information. You come to more detail on how this two-stage model is
constructed after creating a design and obtaining data.
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Designing the Experiment

In this section...

“Overview of Design Process” on page 2-7

“Creating a Test Plan” on page 2-7

“Specifying the Model Inputs” on page 2-8

“Creating Designs” on page 2-12

“Data Source” on page 2-17

Overview of Design Process
Creating a design in the Model Browser comprises several steps. You need to
open the tool and create a new two-stage test plan. Then you need to enter
the ranges and names of the input variables being used and choose a default
model. Then you can create an initial design and set up the constraints on
the input space. These constraints will be the same for all designs. From
this constrained design, a series of child designs can be made with varying
numbers of points added and slightly different models used. The final
design can be chosen by comparing statistics of the various child designs
and considering how many points you can afford to run. These steps are
described next.

Creating a Test Plan

1 Start the Model Browser part of the toolbox by typing mbcmodel at the
MATLAB® command line.

2 From the startup project view, to create a new test plan, click New in the
Test Plans list pane at the bottom.

The New Test Plan dialog box appears.

3 Click the Two-Stage test plan icon and click OK.
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The default name of the new test plan, Two-Stage, appears in the Model
Browser tree, in the All Models pane.

4 Highlight the Two-Stage node of the tree, by clicking it. The Model
Browser window displays a diagram representing the two-stage model.

Specifying the Model Inputs
The models you are building are intended to predict the torque, fuel flow,
and manifold pressure of the engine as a function of spark angle at specified
operating points defined by the engine’s speed, load, and cam timings. The
input to the local model is the spark angle.

1 To specify spark angle as the local input, double-click the Local Inputs
icon on the model diagram.
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The Local Input Factor Setup dialog box appears.

a Set Symbol to S.

b Set Signal to SPARK. This is optional and matches the raw data.

c Set the range you want to model by changing Max to 50 (and leave Min
at 0).

2 Click OK to dismiss the dialog box.

Notice that the new name of the local model input now appears on the
two-stage model diagram.

The global inputs are the variables that are held constant at each operating
point while spark is swept. In this case, these global variables are engine
speed, scaled throttle area, intake cam angle, and exhaust cam angle.

3 To specify the global inputs, double-click the Global Inputs icon on the
model diagram.

The Global Input Factor Setup dialog box appears.

By default, there is one input to the global model. Because this engine
model has four input factors, you need to edit the input factors as follows:
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a Click the up arrow button to increase the number of factors to four.

b Edit the four factors to create the engine model input. In each case,
change the symbols, signal names, and ranges to the following:

Symbol Signal Min Max

N SPEED 500 6000

L LOAD 0.05 0.95

ICP INT_ADV -5 50

ECP EXH_RET -5 50

Load = aircharge/maximum aircharge.

Cam angles are in units of degrees crankshaft, with intake values
indicating advance from base timing, and exhaust values indicating
retard from base timing.

c Click OK to dismiss the dialog box.

4 To change the global model type, double-click the Global Model block in the
two-stage model diagram. The Global Model Setup dialog box appears.
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Deciding on the model to design for is vital for optimal designs only,
when you already have some knowledge of how you expect the system to
behave. In these cases, optimal designs can help you find the most efficient
points for fitting the most robust models. In this case, you will create a
space-filling design, which is best for exploring a new system where prior
knowledge is low and you want to spread the available points to capture as
much information as possible. These do not depend on model type; however,
for this example you set a new model type now.

Remember that the statistical properties of different designs depend on the
model type. For example, if you think you need cubic instead of quadratic
in a factor, the number of points required rises dramatically and this has
a highly adverse effect on the statistical quality of the designs. However,
you do need to bear in mind that the final model will not be either of the
possibilities listed here, because some terms will have been removed, or
it might even be an RBF. You choose the most suitable model you can to
construct a design, then when you have collected the data, you might find
that a different model type produces the best fit.

5 Polynomial should already be selected from the Linear model subclass
pop-up menu. Under Model options, verify the order for each of the four
variables is two, to fit quadratic curves in each case.

6 Set Stepwise to Minimize PRESS (PREdicted Sum Square error).

This option will be important when you are fitting models to the data. You
use the Stepwise feature to avoid overfitting the data; that is, you do
not want to use unnecessarily complex models that “chase points” in an
attempt to model random effects. Predicted error sum of squares (PRESS)
is a measure of the predictive quality of a model. Minimize PRESS throws
away terms in the model to improve its predictive quality, removing those
terms that reduce the PRESS of the model. See “PRESS statistic” in the
Model Browser documentation. You can also open the Stepwise window
after model fitting to try to improve the fit with the Stepwise tools.
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7 Click OK to dismiss the dialog box.

Creating Designs
Now you have set up the modeling test plan you can create an initial design
and set up the constraints on the input space — these will be the same for all
designs. From this constrained design, a series of child designs can be made
with varying numbers of points added and slightly different models used. The
final design can be chosen by comparing statistics of the various child designs
and considering how many points you can afford to run.

1 Right-click the global model in the diagram and choose Design
Experiment.

The Design Editor appears.

2 Click the button in the toolbar or select File > New Design. A new
node called Linear Model Design appears.

2-12



Designing the Experiment

The new Linear Model Design node is automatically selected. An empty
Design Table (or any view you last used in the Design Editor) appears
because you have not yet chosen a design.

3 Constrain the design space. Select File > Import Constraints. The
Import Constraints dialog box appears.

4 In the Import from list, select Boundary Constraints (.mat file).
You will import a boundary model from an example file. In this way, you
can use a boundary constraint from a previous investigation on a similar
engine to constrain new designs.

5 Browse to the file Gasoline_project.mat in the mbctraining directory.

6 Click to select the Boolean type constraint as shown. This is the
combination of both boundary constraint models.

7 Click OK to import the boundary constraint.

Click OK in the following data matching dialog as all the signal names are
automatically selected in this case.

8 Examine the constrained design space by right-clicking the title bar of a
Design Table view and selecting Current View > 3D Constraints.

2-13



2 Gasoline Engine Calibration Case Study

9 Select Design > Space Filling > Design Browser, or click the Space
Filling Design button on the toolbar.

The Space Filling Design Browser appears.

Space-filling designs are best when there is little or no information about
the underlying effects of factors on responses. For example, they are most
useful when you are faced with a new type of engine, with little knowledge
of the operating envelope. These designs do not assume a particular model
form. The aim is to spread the points as evenly as possible around the
operating space. Space-filling designs are also best for radial basis function
models. You can use a mix-and-match approach: start with a space-filling
design to survey the space, then continue testing with an optimal design
once you have more understanding of the response and constraints. Once
you have an idea of what model type will fit the response best, you can
optimally add points in the most efficient places for the most robust model
fit.

The most important thing to decide is how many design points you want.
Testing is expensive and time-consuming, so you need to bear in mind how
many points you have time for. When you consider the number of points,
you also need to remember that a sweep will be done at each point and this
will take some time. Do you need to allow time to fix problems or redo
experimental points that can’t be achieved?

10 Enter 800 for the Number of points and press Enter. A space-filling
design is constructed, using the latin hypercube sampling method. Click
the 3-D and 2-D tabs to examine the plots of new design distribution.

11 Click Generate to create a different design, and repeat until you achieve
approximately 200 points in the Size of constrained design reported
above the preview. This iteration is necessary because the space-filling
design uses the whole variable space and some of the points will be
removed if they fall outside the constraint. The preview is identical to
the final design.

12 Click OK when you are satisfied with the design.

13 Right-click a view and select Split View > 3D Design Projection to view
the design points.
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14 Add another space-filling design for some points with parked cam phasers.
These points are important because we need an accurate model when cams
are parked.

a Click the button in the toolbar to add a new design, and click to
select the new design in the tree. You could rename it CAM_Parked. The
design inherits the same constraints as the parent design.

b Select Design > Space Filling > Design Browser, or click the Space
Filling Design button on the toolbar.

In the dialog that appears, choose to replace the current points with a
new design and click OK.

c Enter a number of points (try 40) and click Generate until you achieve
a constrained design of about 10 points, and click OK.

d Display the design as a table, and edit the values of ICP and ECP in the
new design to be zero.
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15 Select File > Merge Designs. Select both your designs in the list, leave
the Merge to new design option button selected, and click OK. Examine
the merged design in the table view to confirm the parked cam points (ICP
and ECP values of 0) are at the end of the list of design points.

16 Add another space-filling design for collecting validation data.

a Click the button in the toolbar to add a new design, and click to
select the new design in the tree. You could rename it Validation. The
design inherits the same constraints as the parent design.

b Select Design > Space Filling > Design Browser, or click the Space
Filling Design button on the toolbar.

In the dialog that appears, choose to replace the current points with a
new design and click OK.

c Enter a number of points (try 100) and click Generate until you achieve
a constrained design of about 25 points, and click OK.

d To add a point where the cams are parked, select Edit > Add Point.

In the dialog that appears, select User-specified from the Augment
method list, edit ICP and ECP to zero, and click OK.

You can use the Design Editor to make a selection of child designs to compare.
When you have chosen the best design you can export it to file. In this case,
you will import the example design for this case study. This design was used
to collect the data for this case study, and you will later match these design
points to data. Import the design as follows:

1 Select File > Import Design.

2 Leave the default Design Editor file (.mvd) in the Import from
drop-down menu.

3 Browse to the design file DIVCP.mvd in the mbctraining directory, select it
and click Open, then click OK to import the design. A new design node
appears.

4 Rename the imported design (click, and press F2) DIVCP. You can right-click
to change the Current View to examine the design points in 2D and 3D.
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5 Choose DIVCP as the preferred design for future reference by selecting
Edit > Select As Best.

6 Close the Design Editor.

Data Source
The data was collected using a constrained space-filling design on speed, load,
intake cam phase, and exhaust cam phase. The points specified in the design
were measured using the GT-Power engine simulation tool from Gamma
Technologies (see http://www.gtisoft.com/broch_gtpower.html).

Simulink® and StateFlow® simulation tools controlled the GT-Power model,
running on a cluster of 14 desktop PC machines. The simulation time for
the testing was 20 hours. The GT-Power model used predictive combustion,
which gives good realistic results but is computationally expensive. Ten
cycles were run at each spark advance setting after attaining steady-state
speed/load conditions.
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Importing and Filtering Data

In this section...

“Import and View Data” on page 2-18

“Filter Data” on page 2-24

Import and View Data
We provide an example data file, resulting from the example experimental
design.

1 In the Model Browser, click the top root node, Untitled, in the All Models
tree to go to the project view.

2 Click New Data in the toolbar or select Data > New Data.

The Data Editor appears.

3 Click the Open File icon in the toolbar to load data from a file.

The Data Import Wizard appears to select a file.

4 Use the Browse button to find and select the DIVCP_Main_DoE_Data.xls
data file in the mbctraining folder. Double-click to load the file, and click
Next.

5 The Data Import Wizard displays a summary screen showing the total
number of records and variables imported, and you can view each variable’s
range, mean, standard deviation, and units in the list box. Click Finish to
accept the data.
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6 First you must define test groupings. Select Tools > Change Test
Groupings (or use the toolbar button).

7 In the Test Groupings dialog box, clear the check box One test/record.

8 Locate and double-click GDOECT in the Variables list box. GDOECT appears
in the left list.

9 Edit the Tolerance for GDOECT to 0.5. You should see 202 tests defined, as
shown.

2-19



2 Gasoline Engine Calibration Case Study

10 Click OK to close the Define Test Groupings dialog box.

11 Examine the data. The Data Editor is a powerful tool for displaying and
sorting your data. You can use the right-click context menu to split the
views, or use the toolbar buttons or the View menu. You can choose 2-D
plots, 3-D plots, multiple data plots, data tables, and list views of filters,
variables, test filters, and test notes.

For example, if you do not already have a 2-D plot, right-click the title bar
of any plot and select Current View > 2-D Data Plot.

12 Click in the left lists to plot torque (BTQ) against spark (SPARK), then select
one or more tests to display.
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13 Right-click and select Split View > 3-D Data Plot to split the currently
selected view and add a 3-D plot. Select one or more tests to display in the
list at the left of the Data Editor, then choose three variables for the axes.
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14 Right-click and select Split View > Notes View to split the currently
selected view and add a test notes list view. This is empty until you add
any test notes.

15 Select Tools > Test Notes > Add.

The Test Note editor appears.

a Enter an expression that defines the tests you want to note; for example
mean(BTQ) < 0 will evaluate the mean torque for each test and note
those tests where the value is less than zero.

b Enter the text for this note in the edit box, e.g., Negative Torque.
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c Click OK to apply the test note.

16 Note that the new test note appears in the Notes list view.
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You can sort the column for the Negative Torque note by clicking the
column header (once to sort ascending and once more to sort descending).
This allows you to quickly identify which tests satisfy the note definition.
Investigate these test points in the other views. Select a test in the notes
view and that test is displayed in the table view, 3-D plot, and multiple
data plots views (but not the 2-D plots, which have their own test selection
controls). If you select multiple tests, they are all shown in the data plots,
but only the first test in the list is highlighted in the table view.

Filter Data

1 If you decide certain operating points are unsuitable for modeling, for
instance, unstable points on the edge of the engine’s operating envelope,
you can use the Data Editor tools to help you identify and remove them.
You can remove suspect data in the following ways:

a You can remove individual points by selecting them as outliers in 2D and
multiple data plots by clicking, then selecting Tools > Filters > Remove
Outliers. You can always replace them again with the Tools menu.

b You can define filters to remove all data points that do not fulfil a certain
expression. Select Tools > Filters > Add. The Filter Editor appears.
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c You can enter an expression that defines the records you want to keep.
You can use any MATLAB® function for filtering. Enter the following
expression, which keeps records with AFR value greater than 14.25:

AFR>14.25

Click OK. Observe red records that have been filtered out in the top
information bars. If you have turned on the option to Allow Editing in
the data table view you can also see removed records in red.

d Define another filter. Select Tools > Filters > Add. The Filter Editor
appears.

e Enter the following expression, which keeps records with RESIDFRAC
value less than 35:

RESIDFRAC<35

f You can exlude whole tests by defining test filters to remove them. Select
Tools > Test Filter > Add. The Test Filter Editor appears.

You want to keep only those tests with sufficient points to fit the model
(at least 5 points).

Enter length(BTQ)>4 and click OK.

2 You can add a Filter Definitions and Test Filter Definitions list view using
the right-click menu to see whether the filters have been successfully
applied and how many records or tests are removed by each filter.
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The bars at the top of the Data Editor always display the total numbers
and proportion of removed data.

3 Close the Data Editor and return to the Model Browser.
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How Is a Two-Stage Model Constructed?
Local models find the best fit of a curve to the data in each test. Each test
in this case is a sweep of torque against spark angle, with speed, load, and
cams held at a constant value for each sweep. The following illustrates a
single sweep with a local model fitted.

The local models provide the coefficients to generate global models. The
equations describing those local model curves have certain coefficients such
as max and knot, which for this data are peak torque and MBT spark (the
spark angle that generates maximum brake torque).
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Local models are fitted to each test, in different places across the global space,
as illustrated above. Each local model has coefficients for MBT and peak
torque, etc. These coefficients become the data to which the global models
are fitted. Coefficients such as peak torque and MBT are used to make the
second stage of modeling more intuitive; an engineer will have a much better
understanding of how a feature such as MBT spark varies through the global
factor space than some esoteric curve fit parameter. Familiar variables like
these are helpful to engineers trying to decide how well a model describes
engine behavior. Better intuitive understanding allows much greater
confidence in your models.

Global models are the best fit of a curve to the values of, for example, MBT
for each test. This is repeated for each coefficient, producing several global
models fitted to different coefficients of the local models. These coefficients
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are referred to as response features of the local models. The following example
shows a global model for maximum torque across the speed/load global space.

The two-stage model is a surface fitted across all the global models, to describe
the behavior across all global variables.

It can be useful to think of local and global models as a series of 2-D slices,
while the two-stage model fits a 3-D surface across the curves of the global
model slices. It is difficult to visualize more dimensions! The following
example shows a variety of 3-D plots of global models for properties of the
local torque/spark curves (such as MBT, peak torque, and torque a number of
degrees before and after MBT), showing how these properties vary across the
speed/load global space. The 2-D plot of the global MBT model (on the right)
demonstrates how MBT varies with engine speed.
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The two-stage model can take values of each coefficient at a certain value of,
say, speed, to generate a new curve of torque against spark. This is a slice
through the two-stage model surface.

In other words, you can test your two-stage model by comparing it with
the local fit and with the data. For example, you can reconstruct a local
torque/spark curve at an operating point by taking the values of MBT
and peak torque and the curvature from the two-stage model, and then
validate this reconstructed curve against the original fit and the data. The
two-stage model can also predict responses between tests, for new sweeps at
intermediate values for which there is no data. If the two-stage model shows
an accurate fit when compared to the local sweeps, this is a good sign that the
engine behavior is well described by the model across the global variables.

For more details on two-stage modeling, see “Two-Stage Models” on page 5-2,
and see “Two-Stage Models for Engines” in the Model Browser documentation
for more statistical depth. (In the Help Browser you can right-click and select
Back to return to previous pages).
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Building the Models

In this section...

“Completing Model Setup” on page 2-31

“Specifying the Local Model Type” on page 2-32

“Selecting Data and Responses to Model” on page 2-33

Completing Model Setup
You have already set up the local and global inputs and the global model
type before constructing the design. Now you have imported, examined, and
filtered the data in preparation for modeling. To complete your model setup,
you need to specify the local model type, select the data to model, and choose
the responses (model outputs) you want to model.

Remember that the aim of this case study is to produce optimized tables for

• Intake cam phase

• Exhaust cam phase

• Spark timing schedules

These tables are all functions of load and rpm, subject to constraints of
operating region and residual fraction.

To produce these tables, you need to make accurate models of the behavior
of torque, exhaust temperature, and residual fraction at different values of
speed, load, spark, and cam timings. You have set the local model input as
spark, and the global model inputs as engine speed, load, intake cam phase,
and exhaust cam phase. Therefore, the responses you want to model are

• Torque

• Exhaust Temperature

• Residual fraction
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Specifying the Local Model Type
The first response you want to model is torque against spark. The shape
of torque/spark curves is well understood and you have examined some
in the Data Editor. Polynomial spline curves are useful for fitting these
shapes, where different curvature is required above and below the maximum.
Therefore, you should set the local model type to polynomial spline. A spline
is a curve made up of pieces of polynomial, joined smoothly together. The
points of the joins are called knots. In this case, there is only one knot, at the
maximum. The location of the knot in this case marks MBT.

To specify polyspline as the local model type,

1 First select the Two-Stage test plan node in the model tree, so you can
see the test plan diagram.

2 Double-click the local model icon in the test plan diagram.

The Local Model Setup dialog box appears.

a Select Polynomial Spline from the Local Model Class.

b Set Spline Order to 2 below and 2 above knot.
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3 Click OK to dismiss the dialog box.

Notice that the new name of the local model class, PS (for polyspline) 2,2
(for spline order above and below the knot) now appears on the two-stage
model diagram.

Selecting Data and Responses to Model
You have set up model types and model inputs. Now you can select the data
for modeling and the responses (model outputs) you want to model.

1 Double-click the Response block in the test plan diagram. The Data
Selection Wizard appears.

2 Because the test plan contains a design, the radio button Match selected
data to design is selected. The imported DIVCP design appears in the left
list (and other designs you created), and the data object in the right list.
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Select the DIVCP design and click Next.

3 The wizard tries to match each symbol to a data signal (shown as Signal
Name). Make sure SPARK, SPEED, LOAD, INT_ADV and EXH_RET are selected,
as shown. Edit incorrect matches by selecting the corresponding entries in
the input and data lists and click the green arrow to select. Do not select
the copy range check box.
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Click Next.

4 On this screen you select the response to model.
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a Select BTQ as the response you want to model and click Add. Notice the
local model settings you set earlier (PS22).

b Select Maximum from the Datum drop-down menu. In this case, the
maximum of the torque/spark curves is MBT (spark angle at maximum
brake torque), so this can be a useful feature to model.

c Click Next.

5 On this screen, you see the settings for matching data to designs.
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a Enter 0.05 in the LOAD tolerance edit box.

b Select Do Not Use from the drop-down menu for Unmatched Data.
Data points that do not fall within tolerance of the design points will
not be used for modeling.

c Leave the other settings at the defaults and click Finish.

The Data Editor appears so you can select data for modeling. The response
model is built when you close the Data Editor.

6 Right-click a view and select Current View > Cluster View. Use the
drop-down menus to select SPEED and LOAD for plotting.

2-37



2 Gasoline Engine Calibration Case Study

7 Inspect the data and design points by using the check boxes in the cluster
plot. Clear the check box for Equal data and design to remove matched
(green) clusters from the display. These data points fall within tolerance
of the design point, so these points are selected for modeling. When you
remove them from the display, you can see other points more clearly.

8 Clear the box for Unmatched design points, and look at the remaining
excluded data points (plotted as crosses).
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These points have not been matched to any design points because they do
not lie within tolerance. The value of load achieved at these points was
not close enough to the desired value of load, indicating a problem with
these operating points. Notice that these points lie near the edge of the
constrained area. In the Data Wizard, you selected Do not use unmatched
points, so these points have not been selected for modeling. You can always
change the tolerances and decide to include unmatched data points later;
the choice in the Data Wizard is not irrevocable.

9 To accept the matched data for modeling, close the Data Editor. A dialog
appears to check that you want to build the response model for torque
and update the Actual Design to include all data selected for modeling.
Click Yes, and the models are created.
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Selecting Local Models
You should inspect the local and global models in turn, removing outliers if
appropriate and trying different model types, before creating a two stage
model. If the fit is good at the local and global levels you have the best chance
of creating a two-stage model that accurately predicts the engine behavior.
First, inspect the local models.

1 Select the new local model node (PS22) in the model tree, in the All Models
pane.

The local model view appears.
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2 Look through the tests to inspect the fits. Use the Test controls.

3 To quickly identify problem tests, click RMSE Plots in the toolbar (or
View menu). Right-click to turn the test number display on, then inspect
tests with high error values in the local model view. Plot all response
features and investigate tests with extreme values.
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4 Consider removing outliers to improve fits if some points are badly
distorting the torque spark curve (use right-click or Outliers menu). Pay
particular attention to end points. For example, for tests where the majority
of points are at higher spark angles than the maximum (at MBT), it can
improve the fit to remove some of these long “tails”. It can be useful to
remove outliers in this region, because there is likely to be knock at spark
values much higher than MBT where the engine is less stable. Similarly, as
there is no knock in simulation data, points can be collected far in advance
of MBT, and it can improve the fit to remove these.

5 If removing some outliers does not bring MBT within the range of the data
points, consider removing the whole test (use the Outliers menu).

6 After making changes, check the RMSE Explorer plots again for problem
tests.
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7 Check all tests before inspecting the global models. Try looking at the
Local diagnostics (select from the list in the Diagnostic Statistics
pane). Check for high values of Cond(J) (e.g., > 108). High values of this
condition indicator can be a sign of numerical instability.

In the next section, “Creating Boundary Models” on page 2-44, you will
construct a boundary model before inspecting the global models.
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Creating Boundary Models
You can create a boundary model at the test plan node. A model describing
the limits of the operating envelope can be useful when you are evaluating
optimization results and global models. It is useful to create the boundary
model before viewing global models, so you can see the model areas inside the
boundary on plots. You will build two boundary models and combine them, to
map the envelope in speed and load, and also in all four inputs.

1 Select the test plan node in the model tree.

2 Select TestPlan > Boundary Constraints.

The Boundary Editor opens.

3 Click Make Boundary Constraint in the toolbar. A dialog opens where
you can choose to build a boundary model of the response, local, or global
inputs. In this case, you are interested only in making a model of the global
boundary. You are not interested in the Local boundary (you know the
range of spark already). Select Global and click OK.

A dialog opens where you can select constraint inputs.
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4 Leave the Constraint type set to Star shaped and leave only the SPEED
and LOAD check boxes selected. Click OK.

5 A dialog appears where you can set up the star-shaped constraint
parameters. Click OK to use the defaults and the boundary constraint
is calculated.

A Star shaped(N,L) child node appears under the Global node.

6 Select View > Current View > 3D Slice (or use the toolbar button) to
examine the shape of the new boundary model. Drag the axes to rotate the
plot. Use the drop-down menus to change the variables plotted. In any
view, you can change the position of the plotted slice by altering the variable
values in the edit boxes. You can split the views as in the Design and Data
Editors using the buttons in the title bars, or the right-click or View menus.
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7 Click Show Boundary Points in the toolbar. Boundary points are
outlined in red. In some projections and at some plot resolutions, points
can falsely appear to be outside the boundary. You can alter the number
of points plotted in the Value edit boxes, but high resolutions can be
time-consuming to plot. You can also check particular points: in the 2D and
1D Slice views you can click (and hold) points to see the values of the global
variables at that point and the Distance. A distance of 0 means the point
is exactly on the boundary, and negative values show the distance inside
the boundary. You can use this function to check that enough points are
inside or close to the boundary.

8 In a 2D or 3D Slice view, click the button Select Data Point. A dialog
appears where you can select a data point. When you click OK the slice is
plotted at the location of the selected data point. You can also double-click
points to move the slice to that location.

9 Select View > Current View > Pairwise Projections (or use the toolbar
button). Here you can see pairwise projections to view the boundary across
all combinations of factors.

10 On one of the pairwise plots, click and drag to select a small area of points.
The area you select is colored yellow across all plots, so you can view how
those points are distributed across factors. With some detailed surfaces,
areas in the pairwise plots can appear as discrete patches, so this feature is
useful for tracking regions across factors. This can help you decide whether
the boundary is capturing enough (or too much) detail of the surface.

11 Click Make Boundary Constraint in the toolbar. You can build other
boundary models to compare and combine for the most useful model.

In the dialog select Global and click OK.

12 This time leave all four inputs selected and click OK. Click OK in the
following dialog to accept the defaults and a new global boundary constraint
is calculated.

13 Compare the two global boundary models by selecting the Pairwise view,
and selecting each model in the tree in turn.
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14 Select one of the models, and select Constraint > Assign Best (also in
the toolbar).

15 Select the other global model and select Constraint > Add to Best (also
in the toolbar).

16 Now select the parent Global node to see the combination of the two
constraints. Compare with both the child global nodes in the pairwise view.

For more information see “Combining Best Boundary Constraints”.

17 Close the Boundary Editor to return to the Model Browser. Once calculated,
the boundary constraints remain part of the test plan unless you delete
them.
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Selecting Global and Two-Stage Models

In this section...

“Inspect the Global Models” on page 2-48

“Create Multiple Models to Compare” on page 2-50

“Create a Two-Stage Model” on page 2-54

“Adding New Response Models” on page 2-56

Inspect the Global Models
When you are satisfied with the local fits, inspect the global models in turn.
You should check trends of global models. Do the trends go in the right
direction? Previous engineering knowledge can be applied. The following
steps suggest useful plots for investigating trends.

1 Expand the local model node (PS22) in the model tree and click knot.
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2 Right-click outliers (or any point) to see a plot of the test. You can inspect
the shape of the torque/spark curve and see the values of the global
variables. This can help you identify problem tests, perhaps on the edge of
the stable operating region.

Also you can use the global model view scatter plots to plot predicted
values against variables.

Note After identifying problem tests at the global level, return to the local
level to decide whether to remove outliers or the whole test.

3 Select Model > Evaluate > Fit Data to open the Model Evaluation
window.

• Select View > Cross Section to see the trends of your current model
e.g., maximum torque (max model), or MBT (knot model). Try the
Response Surface view. Apply engineering knowledge to check trends.
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• Be aware that Bhigh2 and Blow2 must be negative (to ensure maximum
torque occurs at MBT). To check for this, select View > Response
Surface and click the Table Display type — here cells outside the
boundary model are highlighted yellow to help you focus on the area
of interest.

4 Also you can use the global model view scatter plots to plot Predicted
Bhigh2 or Predicted Blow2 against Speed to look for suspicious positive
values.

Create Multiple Models to Compare
1 Click the Build Models toolbar button.

2 Click Browse, locate the mbctraining directory and click OK.

3 Select the DIVCP template and click OK.

Choose PRESS RMSE in the Model Selection dialog box and click OK, and a
selection of child model types are built for knot. PRESS RMSE is the criterion
used for automatically selecting the best model out of the child nodes.
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You can save your own template of any collection of child models. From the
parent model node (e.g., knot) select Model > Make Template.

4 Now knot has several child models. Inspect each model in turn.If you
remove outliers that have an RBF center (marked with a star) be sure
to refit the model (click the toolbar button Update Model Fit) to reselect
widths and centers.

5 Return to the knot model node and look at the statistics reported in the
list of child models at the bottom. From any parent model node you can
see a list of statistical comparisons for all the child nodes in the lower list
pane, along with information such as the number of parameters. Use this
information to help you decide which model is best.
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• Look for lower RMSE values to indicate better fits.

• Look for lower PRESS RMSE values to indicate better fits without
overfitting.

PRESS RMSE is a measure of the predictive power of your models. It
is useful to compare PRESS RMSE with RMSE as this may indicate
problems with overfitting. RMSE is minimized when the model gets
close to each data point; ’chasing’ the data will therefore improve RMSE.
However chasing the data can sometimes lead to strong oscillations in
the model between the data points; this behavior can give good values
of RMSE but is not representative of the data and will not give reliable
prediction values where you do not already have data. The PRESS
RMSE statistic guards against this by testing how well the current
model would predict each of the points in the data set (in turn) if they
were not included in the regression. To get a small PRESS RMSE usually
indicates that the model is not overly sensitive to any single data point.

If the value of PRESS RMSE is much bigger than the RMSE then you
are overfitting - the model is unnecessarily complex.

PRESS RMSE can be the most helpful single statistic you can use to
search for the best fit relative to the number of terms in the model.
However you should not rely on any single statistic, but use a variety
of criteria and especially the graphical tools available for comparison of
models in the Model Evaluation tool when you click Select. You can also
use other diagnostic statistics to help you select models. For detailed
guidance on how to understand the selection tools see and the “Model
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Selection Guide” in the Model Browser documentation. (In the Help
Browser you can right-click and select Back to return to previous pages).

• You can add other statistics here. Select Model > Summary Statistics.
In the dialog, select the check box for AICc and click OK. A column of
AICc values appears in the model list. This can be a useful statistic
for comparison of models as it penalizes over-parameterized models.
Over-fitting models can later cause problems with optimization when
you use the models to create calibrations. See “Using Information
Criteria to Compare Models”.

6 From the knot model node, click Select in the Models pane at the bottom
to open the Model Selection window. Try the different views and compare
the child models by selecting them in the Model List at the bottom.
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7 Select one of the child models as best (click the button Assign Best) and
close the Model Selection window to return to the Model Browser. Try other
model types if you are not satisfied with the quality of the fit. You could
work through the modeling tutorial for more guided examples of how to
select models, see Chapter 5, “Tutorial: Model Quickstart ”.

8 When you have selected a best child model, select File > Clean-up Tree to
discard all but the model you chose as best. The process of searching for
good model fits often results in a large selection of models, and cleaning
up the tree reduces file size. It can also save time when saving the file,
especially if you have made a change such as removing an outlier at local
level, that causes all response feature models to be refitted.

9 Select another global model such as Bhigh_2 and click Build Models
in the toolbar. Select the DIVCP template to automatically build the same
selection of child model types for Bhigh_2. This can help you quickly build
multiple models to compare. The Model Selection dialog appears, where
you can choose a criterion such as PRESS RMSE or AICc for automatically
selecting the best model out of the child nodes.

10 Repeat this process of searching for good global model fits for the other
three global models.

Create a Two-Stage Model
1 When you have selected best models for each global model, return to the

local model node (PS22) in the model tree, and click Select in the Response
Features model list pane at the bottom to calculate the two-stage model
and open the Model Selection window.
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Look through the plots of the new two-stage model against the local fits
and the data.

When you close the Model Selection window and accept the new model as
best, the two-stage model is copied to the BTQ response node in the model
tree.

2 You can choose to calculate maximum likelihood estimation (MLE) at this
point. This process refits, taking proper account of the correlation between
different response features. Try calculating MLE, then select the BTQ node
and return to the Model Selection window to compare the MLE model with
the univariate model (click Select All in the Model List pane).

For more guidance on creating multiple local, global and two-stage models to
search for the best fit, work through the step-by-step examples in Chapter
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5, “Tutorial: Model Quickstart ”, especially the section “Creating Multiple
Models to Compare” on page 5-43.

Adding New Response Models
To complete the model building you should follow the same process as for
modeling torque to create and select good models of the other responses:
exhaust temperature and residual fraction (instructions below). These models
are required for the optimization problems. Remember you can look at
the example finished project, Gasoline_project.mat, in the mbctraining
directory, to see how the example models have been constructed. You will use
these example models in CAGE for the optimization section.

Exhaust Temperature Model

1 Select the test plan node in the model tree to return to the test plan view.

2 Double-click the Responses icon in the block diagram.

3 The Response Model Setup dialog appears.

a Select EXTEMP from the list of signals.

b Click the Local Model Set Up button. Select Polynomial from the
Model class drop-down menu and click OK.

c Select BTQ datum from the Datum drop-down menu. It can be useful to
plot the position of MBT on other models.
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d Click OK.
A new set of local and global models is calculated for the exhaust temperature
response.

1 Expand the new model nodes in the tree and select the new local node
(POLY2). You can copy the outliers you selected for the torque models. Select
Outliers > Copy Outliers From. The Copy Outliers dialog box appears.
Select the BTQ local model node in the tree (PS22, under BTQ), and click OK
to copy the outlier selections to the EXTEMP local node.

2 Examine the fit in the same way as you did the torque fits.

• Try different local models. Click New at the EXTEMP response node.

• Try different global models as you did for the torque response features.
Use Build Models and the DIVCP model template, or click New to
add child nodes and try different model types one at a time. If you use
Build Models at the local level you can apply a template to all response
feature models at once.

• Try a new response feature. Click New at one of the local nodes you
have created and enter -10 for the value to use MBT minus 10 degrees of
spark as a new response feature.
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See Chapter 5, “Tutorial: Model Quickstart ” for simple worked examples
of adding new local, global, response feature and two-stage models.

3 When you are satisfied with the fits, return to the local model node and
click Select to calculate the two-stage model. If you have added new
response features, there will be more than one two-stage model to choose
from in the Model Selection window.

4 Try calculating MLE and return to the Model Selection window to compare
the MLE model with the univariate model and select the best.

Residual Fraction Model

1 Repeat the steps to create a model of residual fraction (RESIDFRAC).

Make sure you use the BTQ datum datum link model so you can view MBT.
As a result of this, one of the response features, FX_0, models residual
fraction at MBT. You will use this in your optimizations in CAGE.

2 The process of searching for good model fits often results in a large selection
of models. Remember to discard all but the models you chose as best, by
selecting File > Clean-up Tree.

Look at the example finished project, Gasoline_project.mat, in the
mbctraining directory, to see how the example models have been constructed.
You will use these example models in CAGE for the optimization section.
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Using Validation Data
After you have created models, you can use the validation data.

To import and filter the validation data set,

1 Select the top project node in the Model Tree.

2 Double click the Data Object in the Data Sets pane. The Data Editor
appears.

3 Click the Storage button in the toolbar.

Click Store current filters and Store current test filters in the toolbar.
This allows you to reuse these filters in another data object without having
to recreate them.

4 In the Model Browser, click New Data in the toolbar.

5 Click the Open File icon in the toolbar to load data from a file.

The Data Import Wizard appears to select a file.

6 Use the Browse button to find and select the
DIVCP_Validation_DoE_Data.xls data file in the mbctraining folder.
Double-click to load the file, and click Next.

7 The Data Import Wizard displays a summary screen. Click Finish to
accept the data.

8 You need to define test groupings as before.

a Select Tools > Change Test Groupings (or use the toolbar button)

b In the Test Groupings dialog box, clear the check box One test/record.

c Locate and double-click GDOECT in the Variables list box. GDOECT
appears in the left list.25 tests are defined. Close the Define Test
Groupings dialog box.

9 To apply the same filters as before, click the Storage button in the toolbar.
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In the Storage dialog box, select the filter and test filter objects in turn and
click Append stored object in the toolbar. This applies these filters to
the current data object. Return to the Data Editor window and check the
filters in the Filter List and Test Filter List View.

10 Close the Data Editor.

To attach the data set to your test plan for validation:

1 At the test plan level, select TestPlan > Validation Data. The Select
Data for Validation wizard appears.

2 Select the validation data set (observe the number of tests), and click Next.

3 By default all tests are selected on the next screen, so click Finish to use
all the tests to validate models in this test plan.

The validation data set appears in the right information pane for the test
plan. Validation RMSE is automatically added to the summary statistics for
comparison in the bottom list view of response models in the test plan.

You can now use the validation data to validate all models except response
features. You can see validation statistics in the following places:

• Model List — Validation RMSE appears in the summary statistics in the
lower list of models at the test plan, response and one-stage nodes

• At the local node view:

- Pooled Statistics — Validation RMSE — The root mean squared error
between the two-stage model and the validation data for all tests

- Diagnostic Statistics > Local Diagnostics — Local model Validation
RMSE for the currently selected test (if validation data is available for the
current test—global variables must match)

• Summary Table — Validation RMSE for one-stage models

View validation plots in the following places:

• Plots of Validation residuals — For local models
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• From any model node except response features, you can select
Model > Evaluate > Validation Data to open the Model Evaluation
window and investigate the model with the selected validation data.

Check the model trends in the cross section view. Check the fit against
the validation data. Is the fit acceptable? Do you need more data? Can
you improve the fit with the existing data? Pay attention to the boundary
model on the plots. Yellow areas are outside the boundary. Focus on the
model trends only within the boundary model.
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Exporting the Models
You can export models to file, to CAGE, to the workspace or to Simulink®

software. This capability makes models easy to share across engineering
groups.

You can use File > Export for all of these options. The models exported
depend on the model node you have selected in the tree. To export all models
in the test plan, select the test plan node.

Note For this example, you use CAGE to import the models.

You use the example models in the CAGE part of the Model-Based Calibration
Toolbox™ product to produce optimized calibration tables. Proceed to the
next section for instructions.
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Optimized Calibration

In this section...

“Problem Definition” on page 2-63

“Benefits of Automated Calibration” on page 2-64

Problem Definition
This section describes the creation and optimization of calibration tables
for the gasoline case study. The Model Browser section of this case study
covers creating the design for the experiment and creating and evaluating
models from the resulting data. You can export your models directly to CAGE;
or to Simulink® software or to a file, ready to be imported into CAGE for
model-based calibration generation. An example file is provided.

The aim of this case study is to produce optimized tables for

• Intake cam phase

• Exhaust cam phase

• Spark timing schedules

as a function of load and rpm, subject to the following constraints

- Constrain solutions to lie within the boundary constraint model

- Constrain cam phase solutions so they do not change by more than 10o

between table cells (that is, no more than 10o per 500 RPM change and
per 0.1 load change).

- Constrain residual fraction <= 25% at each drive cycle point (to ensure
stable combustion). Residual fraction is the percentage of burned gas
mass in the cylinder at intake valve close, relative to the total mass
in the cylinder at intake valve close. Constraining maximum residual
fraction is a simple and reasonable way of ensuring stable combustion.
Residual fraction = 100 * Burned Gas Mass from Last Cycle / (Burned
Gas Mass From Last Cycle + Fresh Air Mass)

CAGE is intended for model-based calibration, although you can still create
tables without reference to models if you want. For this case study, you use
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models produced in the Model Browser to generate calibrations in CAGE.
You cover the following steps:

1 Load models of engine responses, decide on optimization strategy and
define additional models. See “Importing Models into CAGE” on page 2-66.

2 Set up tables. See “Setting Up Calibration Tables to Fill” on page 2-69.

3 Define optimization objective and constraints. See “Setting Up the
Optimization” on page 2-72.

4 Set up an operating point set for the optimization. See “Defining Variable
Values” on page 2-77.

5 Run the optimization and view the results. See “Running the Optimization”
on page 2-81

6 Duplicate and modify the optimization to create a sum optimization
using the previous results as starting points. See “Setting Up the Sum
Optimization” on page 2-84

7 Fill tables from optimization results. See “Filling Tables with Optimization
Results” on page 2-91.

8 Use models and optimized tables to fill a spark estimator table. See “MBT
Spark Estimator Problem” on page 2-93.

For guidance, you can look at the example finished project:
Gasoline_optimization.cag.

Benefits of Automated Calibration

• You can move the table-filling process away from the test bed.

• You can regenerate calibrations when objectives, constraints, or calibration
table layouts change, without additional testing.

• You can explore tradeoff possibilities interactively.

• You can produce initial calibrations using engine simulation software,
before hardware is available.
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CAGE can provide both automatic and interactive calibration optimization.
You can trade off multiple objectives, deal with multiple constraints, and you
can examine optimizations point-by-point or drive-cycle-based. You can use
built-in optimization routines or write your own. You can fill groups of tables
simultaneously, and optimize table values and breakpoint settings. CAGE can
provide solutions for these example applications:

• Control problems

- Injection timing and duration

- EGR valve

- Spark timing

- Dual-independent variable valve timing

- Emissions-constrained BSFC optimization over drive cycles

• Estimation problems

- Torque

- Emissions

- Air flow and manifold pressure

- Intake valve temperature

- Borderline spark
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Importing Models into CAGE
1 Start CAGE by typing cage at the MATLAB® command line.

2 Select File > Import From Project. The CAGE Import Tool appears.

3 Click the Import From Project File button. Locate the example
model file created in the Model Browser, Gasoline_project.mat, in the
mbctraining directory, and click Open.

4 You can select from a list of models in the file. Select these models by
Ctrl+clicking in the list:

• BTQ

• EXTEMP

• knot (Type = Datum)

In this case the knot model is duplicated because the datum model was
used twice during modeling. The datum model tracked the maximum
of the torque model, that is, MBT (the spark angle at maximum brake
torque). This datum model was also used when modeling exhaust
temperature and residual fraction, because it can be useful to see MBT
on model plots for other factors. This is called a datum link model. You
need only one copy of the knot model.

• FX_0 (Check that the Location specifies RESIDFRAC, not EXTEMP)

The response feature model FX_0 is RESIDFRAC at MBT. RESIDFRAC was
constructed using a datum link (in this case knot, i.e., MBT) so FX_0 is
residual fraction evaluated at the datum point (MBT).

Check that your selection matches those shown.
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5 Click the Import Selected Items button .

6 In the following Import dialog,

• Double-click to edit the CAGE Model Name for the knot model to
rename to MBT.

• Double-click to edit the CAGE Model Name for the FX_0 model to
rename to RESIDFRACatMBT.

• Click OK to import the models.

7 Close the Import Tool and click the Models button to select the Models
view in CAGE. You should see the BTQ, EXTEMP, MBT, and RESIDFRACatMBT
models in the list. The selected model is displayed in the other panes.

The objective is to produce optimized tables for spark and cam timings, subject
to constraints on operating region, residual fraction, and the gradient of the
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cam phasers over the calibrated tables. You want the optimization to search
for the timings that give the best torque and minimum fuel consumption,
subject to the constraints.

You could fix the spark timing to be MBT spark (the spark angle that produces
maximum brake torque) by using the MBT spark model as the spark input
to the other models in the optimization. With spark fixed at MBT, you can
set up an optimization that allows the two valve timings to vary, exploring
the space via a gradient descent algorithm to locate the optimal timings.
Remember, this is a simplified problem and running an engine at MBT is
knock-limited and so is not possible at all operating points. For this example,
you will not use the MBT model as you will use spark as a free variable in the
optimization. You will return to the MBT model later.

Note you can also:

• Export models directly from the Model Browser to CAGE when both are
open

• Use the CAGE Import Tool to import models directly from the Model
Browser

• Use the CAGE Import Tool to import models and other calibration items
(tables, optimizations, tradeoffs, data sets, features) from any project file
created in CAGE or the Model Browser. This can help you use existing
projects to speed up the setup of new sessions.

• Export models to a file which you can import to CAGE by selecting
File > Import > Model
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Setting Up Calibration Tables to Fill

In this section...

“Altering Variable Ranges” on page 2-69

“Setting Up Tables” on page 2-69

Altering Variable Ranges
Editing variable ranges before creating tables will produce easy-to-read
values (e.g., 0.1, 500, 0.2, 1000, etc.) for the table breakpoints when CAGE
automatically spaces the normalizer values across the variable ranges.

1 Click the Variable Dictionary button to switch to the Variables view.

2 Select N, edit the range to 500 for the minimum, 5000 for the maximum,
and press Enter.

3 Select L, edit the range to 0.1 for the minimum, 1 for the maximum, and
press Enter.

Setting Up Tables

1 Set up a new 2-D table. Select File > New > 2D Table.

2 Name the table SPK.

3 Select L and N from the Y and X Input drop-down menus, , as shown.
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4 Leave the number of rows and columns at 10, and leave 0 for the initial
value.

5 Click OK to create the table.

CAGE switches to the Tables view, where you can see the new table and
its normalizers in the Tables tree on the left. CAGE has automatically
initialized the normalizers by spacing the breakpoints evenly across
the range of the input variables N (speed) and L (load). Note that the
normalizers appear as calibratable items in their own right, and as
descendants (child nodes) of their tables.

Once you have created a table, you can duplicate it to create more tables
that share the same breakpoints.

6 To set table limits, click to select the SPK table, then select
Table > Properties. In the Table Properties dialog box, enter 0 and 50
in the Table value limits edit boxes. Click OK.
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7 Right-click SPK in the tree and select Duplicate SPK.

8 Click to select the new table, press F2, and rename the table INTCAM.

9 Select Table > Properties. In the Table Properties dialog box, edit the
lower limit to -5. Leave the upper limit at 50, and click OK.

10 Right-click INTCAM in the tree and select Duplicate INTCAM.

11 Click to select the new table, press F2, and rename the table EXHCAM.

Now you have tables for optimized spark and cam timings, ready to fill with
optimization results.
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Setting Up the Optimization
CAGE provides a flexible optimization environment. You can define the
objectives, the constraints, and the points where the optimization is carried
out.

The objective is to maximize the weighted sum of torque over a set of [N, L]
points subject to a set of constraints. This is a constrained single objective
optimization problem.

You solve this problem in two parts:

1 Run an initial optimization to explore the problem point-by-point in order
to obtain good starting points for the sum optimization.

2 Use the solutions from the initial optimization as the start points to run the
sum optimization over the drive cycle to find optimal settings of spark (SPK)
and cam (ICP, ECP) timing. Use these results to fill calibration tables.

CAGE has several built-in optimization routines and the capacity for you to
write your own; in this case study you use foptcon. This is a modified version
of fmincon from the Optimization Toolbox™ product. In CAGE, you can use
the algorithm to minimize or maximize.

1 Select File > New > Optimization. The Optimization Wizard appears.
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2 foptcon is selected by default, and this is the optimization algorithm
you will use for this example. Note that this algorithm specifies a single
objective in the Objectives column. Click Next.
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3 Increase

a The number of free variables to 3

b The number of constraints to 2

Click Next.
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4 Select S, ICP and ECP in turn for the free variables, for each click the button
to select them, and click Next.

5 Select BTQ from the list of models on the right and click to select it for the
objective. Select the Maximize radio button, and click Next.
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6 Select RESIDFRACatMBT from the list of models on the right and click to
select it for the first constraint. With the RESIDFRACatMBT constraint
selected, enter 25 in the edit box and press Enter (to constrain the
optimization to stable combustion regions). Ensure that the expression
reads RESIDFRACatMBT <= 25

7 Similarly, select MBT from the list of models on the right and click to select
it for the second constraint.

Select the option button Boundary of model to use the boundary model to
constrain the optimization.

Click Finish.

CAGE switches to the Optimization view. Look at the information
displayed. Here you can examine and edit the objective and constraint.
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Defining Variable Values
You need to define the set of points where you want the optimization to run.
In this case, you run the optimization over the table breakpoints in the tables.
You can edit values manually in the Input Variable Values pane in the
Optimization view, or you can import values from existing optimization output
values, tables or data sets.

Edit set points of variables as follows.

1 Click the Variable Dictionary button to go to the Variable Dictionary view.

2 Click to select the variable ECP and edit the Set Point to 5.

3 Click to select the variable ICP and edit the Set Point to 40.

To import table breakpoints and initial values to your optimization, you will
first create a feature to fill a SPK table from the MBT model. You can then
use this table to initialize the starting values for your optimization.

To create the feature table,

1 Click the Tables button to return to the Tables view, and right-click to
duplicate the SPK table. Rename the new table SPK_Initial.

2 Select File > New > Feature. CAGE switches to the Feature view.

3 Select Feature > Graphical Strategy Editor. Three Simulink® windows
appear.

4 In the CAGE project library window, double click the Tables block. The
Tables library window opens.

5 Drag the SPK_Initial table block from the Tables library to the New
Feature window.

6 Click to select SPK_Initial, then Ctrl+click the blue New_Feature block to
connect the two.

7 Double-click the blue New_Feature block to import the strategy into CAGE.
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8 In the Feature view, click the Select Model button.

9 In the Select Model dialog, select MBT and click OK.

10 Click Fill Feature in the toolbar. The Feature Fill Wizard appears.

11 Click Next three times, then click the Fill Tables button. Click Finish
when the process has finished.

12 Expand the New_Feature node in the tree and select the SPK_Initial node
to view the filled table. In the comparison pane you can see where the table
limits cause the values to diverge from the feature model at low load.

13 Click the Optimization button to return to the Optimization view.

14 Select Optimization > Import from Table Grid.

Select the SPK_Initial table and click OK to import the table grid into the
optimization variable values.

15 Select Optimization > Import from Table Values.
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Select the check box to import values for S, and select SPK_Initial from
the Fill Input With list. Click OK to import the table values of spark into
the optimization initial values for S.

View the values in the Input Variable Values pane in the Optimization
view. These values define the variable values at each point where you want
the optimization to run. The fixed variable values are the table breakpoints,
and the free variable initial values are the filled table values of spark, and
the defaults (set point) for the other free variables.
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Running the Optimization
You have defined objectives, constraints and a set of operating points. Your
optimization is ready to run.

1 Click Run Optimization in the toolbar.

2 When the optimization is complete, the view switches to the new child node,
Optimization_Output, in the Optimization tree under the Optimization
node. View the results.

3 Look through the solutions at different operating points by clicking cells
in the output table. Regions that do not meet the constraint are yellow in
the plots and tables.
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Because this is a single-objective optimization, there is only one solution at
each point.

4 Observe the colored icons that indicate the Accept status of each solution
plotted in the Results Surface view, and of each corresponding row in the
Optimization Output Values table.

CAGE automatically selects the Accept check boxes in the table for
solutions where the algorithm exit flag indicates success (>0). These
solutions show a green square icon in the table and surface. CAGE also
highlights unsuccessful solutions for you to investigate.

Click in the table or surface view to select solutions, and other plots (such
as the Objective Contours and Objective Graphs) update.

5 Right-click the title bar of the Results Surface view and select Current
View > Results Contour. Observe the Accept icons for the solutions.

6 Examine the orange triangle Accept status solutions. This indicates the
algorithm exit flag is zero. This means the algorithm terminated because it
exceeded limits on the amount of computation allowed (e.g., the algorithm
ran out of iterations or function evaluations). You could decide to accept
these solutions or you could try changing tolerances and optimizing again.
Do not edit any check boxes yet.

The Objective Contours plot of ECP against ICP is useful for analyzing
results. Also check the Objective Graphs for spark to ensure that maximum
torque is obtained.

7 Export all acceptable results to tables to check surfaces. Click Fill Tables in
the toolbar and use the wizard. If you need instructions, see “Filling Tables
with Optimization Results” on page 2-91.

Check trends, and don’t worry about smoothness. You will apply table
gradients constraints to smooth the table surfaces in the next optimization.

8 You can change the Accept selections using the check boxes for each
solution, or by right-clicking points in the surface view. You can use these
Accept selections to choose solutions within the table for use in filling tables,
exporting to data sets and importing to other optimization starting values.
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Reject point 22 (clear the check box). This is in the wrong region with
respect to adjacent points in the table.

9 You may want to turn off the display of constraints in the Objective
Contours plot before running the next sum optimization or viewing the
output node for the sum optimization. This will save time displaying the
output views. Right-click the contour plot and toggle Display Constraints
off.
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Setting Up the Sum Optimization

In this section...

“Setting Up the Optimization Initial Values and Objective” on page 2-84

“Creating Table Gradient Constraints” on page 2-87

“Running the Sum Optimization” on page 2-90

Setting Up the Optimization Initial Values and
Objective
The aim of this case study is to produce optimized tables for

• Intake cam phase

• Exhaust cam phase

• Spark timing schedules

as a function of load and RPM, subject to the following constraints:

- Constrain solutions to lie within the boundary constraint model

- Constrain cam phase solutions so they do not change by more than 10o

between table cells (that is, no more than 10o per 500 RPM change and
per 0.1 load change.)

- Constrain residual fraction <= 25% at each drive cycle point

The optimization objective is to maximize the weighted sum of torque over a
set of [N, L] points subject to the constraints described.

The initial point-by-point optimization was designed to obtain good starting
points for the sum optimization. Now, you can duplicate and modify that
initial optimization to run the sum problem. You use the solutions from the
initial optimization as the start points to run the sum optimization over the
drive cycle to find optimal settings of spark and cam timings. You use these
results to fill calibration tables.

1 Right-click the initial optimization node, and select Duplicate.
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2 Click to select the new optimization, press F2, and enter Sum_optimization
as the new name.

3 Import initial values from the output of the first optimization. Select
Optimization > Import From Output.
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a Select the first Optimization_Output (there are two because the
duplicate optimization also contains an output node).

b In the Selection within output pane, select the Acceptable option
button to use only the solutions marked as acceptable.

c To view the selected Acceptable solutions, click the button Select in
Table. Review—but do not change—the selected solutions.

Click OK to dismiss the Select Output Data dialog box.

d Click OK to close the Import From Optimization Output dialog box and
import the acceptable output values for all the free and fixed variables.
These values are the starting values for the new optimization. Observe
the new values in the Input Variable Values pane in the Optimization
view.
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4 Select Optimization > Convert to Single Run. In the Input Variable
Values pane, there is now a single run with 42 values, instead of the
previous 42 runs of single values.

5 To run a sum optimization over the drive cycle, convert the objective to a
sum objective. Double-click BTQ in the Objectives pane to open the Edit
Objective dialog box.

a Select Sum Objective in the Objective type drop-down menu.

b Select BTQ from the Model list, and verify that Maximize is selected
for the objective type.

c Click OK to close the dialog box.

Now, your sum optimization is ready to run. Before you do this, see the next
section to create table gradient constraints.

Creating Table Gradient Constraints
To meet engineering constraints it is essential that some calibration tables
meet a level of smoothness. For example, large cam phase changes between
adjacent table cells cannot be used because the controls cannot physically
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move that fast. Achieving a level of smoothness is important for variable valve
timing calibration problems. Unconstrained optimizations may find solutions
where the cam timings change too rapidly across tables. You can apply table
gradient constraints to make sure the resulting tables are smooth enough.

To apply a gradient constraint to restrict the change in EXH between adjacent
table cells:

1 Right-click in the Constraints pane, and select Add Constraint. The Edit
Constraint dialog box appears.

2 Select Table Gradient from the Constraint type drop-down menu.

3 Enter Grad_ECP in the Constraint name edit box.

4 Select the variable ECP to constrain.

5 Select the table axes N (from the Row drop-down) and L (from the Column
drop-down).
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6 Select EXHCAM from the Import From Table drop-down menu. The
breakpoints of this table now appear in the breakpoints edit boxes:
500:500:5000 in N, and 0.1:0.1:1 in L.

7 Apply the gradient constraint across the breakpoints of the table. As shown
in the following figure, enter 10 in the N axis Maximum change edit box,
and verify 500 is in the Axis value change edit box. This specification
constrains the maximum change to 10 degrees ECP per 500 change in N (the
difference between cells, as shown in the axis breakpoints edit box).

8 Next, enter 10 in the L axis row Maximum change edit box, and verify
that 0.1 is shown in the Axis value change, to constrain the maximum
change to 10 degrees per 0.1 change in L.

9 Click OK to close the Edit Constraint dialog box.

Similarly, add another gradient constraint to restrict the change in INT
between adjacent table cells as follows:

1 Right-click in the Constraints pane and select Add Constraint. The Edit
Constraint dialog appears.
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2 Select Table Gradient from the Constraint type drop-down menu.

3 Enter Grad_ICP in the Constraint name edit box.

4 Select the variable ICP to constrain.

5 Select the table axes N (from the Row drop-down) and L (from the Column
list).

6 Select INTCAM from the Import From Table drop-down menu. The
breakpoints of this table now appear in the breakpoints edit boxes:
500:500:5000 in N, and 0.1:0.1:1 in L.

7 Apply the gradient constraint across the breakpoints of the table. As
shown, enter 10 in the N axis Maximum change edit box, to constrain
the maximum change to 10 degrees ICP per 500 change in N (the difference
between cells, as shown in the axis breakpoints edit box).

8 Next, enter 10 in the L axis row, to constrain the maximum change to 10
degrees per 0.1 load change.

9 Click OK to dismiss the Edit Constraint dialog.

Running the Sum Optimization
To run the optimization:

1 Click Run Optimization in the toolbar.

2 When the optimization is complete, the view switches to the updated
child node, Optimization_Output_1, in the Optimization tree under the
Sum_optimization node. (Recall that you duplicated an optimization,
including its output node). View the results. For guidance see “Interpreting
Sum Optimization Output”.

Remember you can check the example project, Gasoline_optimization.cag
from the mbctraining directory, to view completed examples of the
optimizations and filled tables.
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Filling Tables with Optimization Results
1 Select Solution > Fill Tables.

The Table Filling Wizard appears.

2 Shift-click to multi-select the SPK, INTCAM, and EXHCAM tables and click the
button to add the tables to the filling list. Click Next.

3 You need to select factors for table filling.

a Select the SPK table on the left, and double-click S in the right list of
optimization results to select it for filling the table.

b The next table down (INTCAM) is automatically selected, so you can
double-click ICP in the right list to fill this table.

c The next table down (EXHCAM) is automatically selected, so you can
double-click ECP to fill this table.

Note that you could also choose the MBT model to fill a table, for example
if you wished to compare your optimization results with the spark
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timings specified by the MBT model. You will fill and optimize tables
from models in more detail in the next section.

d Make sure the check box Use acceptable solutions only is selected.

e Click Finish to fill the tables.

A dialog appears with the message that the tables have been filled
successfully. Click OK.

4 Switch to the Tables view to view the filled tables. Click Tables in the
Data Objects pane, and select the filled tables in turn.
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MBT Spark Estimator Problem

In this section...

“What Is an Estimator?” on page 2-93

“View the Feature” on page 2-93

“View Variables” on page 2-94

“Edit and Import Boundary Model” on page 2-95

“Use the Feature Fill Wizard” on page 2-96

“Inspect Results” on page 2-100

“CAGE Import Tool” on page 2-103

What Is an Estimator?
The cam timings optimization results solved a control problem. You can also
use CAGE to calibrate estimator problems. Here you will use an MBT model
to produce a spark estimator feature which estimates MBT spark when each
cam is on or off, using the cam timings found by the optimization.

View the Feature
1 Select File > Open Project and load the example project,
Gasoline_optimization.cag from the mbctraining directory.

2 Click Feature in the Processes pane to go to the Feature view.

The features Exhaust_CAM, Intake_CAM, and MBT_Spark are in the Feature
tree. The MBT_Start_Feature was used to provide initial values for the
optimization, as described in “Defining Variable Values” on page 2-77.

3 Select MBT_Spark and view the strategy by selecting Feature > Graphical
Strategy Editor.

4 Examine the strategy model. Observe the Multiport Switch block which
switches between MBT tables depending on whether each cam is on or off.
The variables Intake_On and Exhaust_On are used to define whether cams
are parked or not. All the MBT tables (with and without cams) share the
same speed (N) and load (L) normalizers.
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If you wanted to import this strategy model, you would double-click the
MBC_Spark blue outport to parse the strategy into CAGE. This strategy has
already been imported into this project so just close the model window.

5 Expand the MBT_Spark feature in the tree to see the MBT tables that
have been created by importing the strategy: MBT_Base, MBT_Intake,
MBT_Exhaust, and MBT_Dual. These tables share the same normalizers in
speed and load.

6 Similarly view the strategies for the Exhaust and Intake CAM features.
These features switch between parked cams and active cams depending on
the threshold value. The CAM features define the cam inputs and switch
between the optimal CAM tables (from the optimization results) and the
parked values. You can use the linking functionality in the Feature Filling
Wizard to connect features and tables to models.

View Variables
You need some variables and constants to define when the cams are parked
so the strategy can switch between optimal cam timings and parked cams
at a threshold value.
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View how this is done:

1 Click Variable Dictionary in the Data Objects pane to switch to the
Variable Dictionary view.

2 Click to select the new variable Exhaust_On.

3 Observe the Minimum is 0 and the Maximum is 1.

4 The variable Intake_On has the same values.

Also two constants define the parked cam positions:

1 Select Exhaust_Parked.

2 Observe the Set Point of this constant is 0.

3 Select Intake_Parked; this has a Set Point of 0.

Edit and Import Boundary Model
To edit the boundary model and import it to CAGE,

1 Open the Model Browser (enter mbcmodel at the MATLAB® command line).

2 Load the example project. Select File > Load Project, locate and select
Gasoline_project.mat in the mbctraining directory.

3 Select the DIVCP test plan node in the tree.

4 Select TestPlan > Boundary Constraints (or click Edit boundary
constraint in the toolbar).

The Boundary Editor opens.

5 Select the Star shaped(N, L) constraint in the tree, and click Assign
constraint as best in the toolbar. This removes all the other constraints
from the collection of best boundary models.

6 Close the Boundary Editor. In the Model Browser, observe the single
constraint Global/Star shaped(N, L) listed under Boundary Constraint
in the right information pane.
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7 Return to CAGE and select File > Import From Project.

The CAGE Import Tool appears. You can import directly from the Model
Browser when it is open, and the CAGE Import Tool automatically displays
the available items.

8 Select knot (the datum model) from the list.

9 Click the Import Selected Items button.

10 The Import dialog opens displaying the model you selected for import.
Double-click the CAGE Model Name column cell to edit the name to
MBTwithSpeedLoadBoundary, and click OK to import the model.

Use the Feature Fill Wizard
You can use the Feature Fill Wizard to fill and optimize the values in tables by
reference to the model. You can fill multiple tables at once using the wizard,
and you can Fill from the top feature node or from any table node in a feature.

1 Click Feature in the Processes pane to return to the Feature view, then
select the feature node MBT_Spark.

2 Click in the toolbar, or select Feature > Fill. This opens the Feature
Fill Wizard.

3 Select all four table check boxes to fill all tables.
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You could also explore setting gradient bounds to constrain table filling
for smoothness.

This time leave the other settings at the defaults and click Next.

4 Choose filling model, constraint, and links.

• Make sure MBT is the Model to fill the tables.
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• Select ECP in the left Variables list and the Exhaust_CAM feature in the
right Links list and click Link.

• Select ICP in the left list and Intake_CAM in the right list and click Link.

• Click Select Constraint. The Edit Constraint dialog box opens.

Select the model MBTwithSpeedLoadBoundary, select Boundary
constraint as the Evaluate quantity, and click OK. This boundary
model constraint ensures you only fill over speed/load points where the
data was collected.

When you return to the Feature Fill Wizard, click Next.

5 Set values to optimize over.
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• Enter 0, 1 in the Exhaust_On Value edit box, and press Enter.

• Enter 0, 1 in the Intake_On Value edit box, and press Enter.
You use these values because the strategy includes the following tables.

Table Intake_On Value Exhaust_On Value

MBT_Base (cams
parked)

0 0

MBT_Exhaust 0 1

MBT_Intake 1 0

MBT_Dual 1 1

The N and L normalizer values are automatically selected. You can edit
normalizers manually, or you can click the Initialize From Normalizer
button here to reach a dialog where you can select normalizers and
interleave values between breakpoints. Interleaving values can minimize
interpolation error by adding values between each normalizer value. In
this way, you can create a grid of more points than table cells to optimize
over. Leave the setting alone for now.

Click Next.
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6 Fill tables and generate plots.

Click the Fill Tables button. Watch the graph as the optimization
progresses.

When it is finished, select all enabled check boxes, and click Finish. Plots
appear summarizing the feature fill data.

Inspect Results
Look at the filled tables, linked models and exported data set.

1 In the Feature view, select in turn the tables MBT_Base, MBT_Intake,
MBT_Exhaust, and MBT_Dual in the feature tree.
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Observe the yellow mask area of cells in each table — the mask is defined
by the limits from the MBTwithSpeedLoadBoundary boundary constraint
model you selected. The rest of the table values are extrapolated after
the mask cells are filled by the Feature Fill Wizard (specified by the
Extrapolate check box). Table values are limited to [-10 60] as specified in
the Table Bounds in the Feature Fill Wizard.

The lower comparison pane (if you have it open) does not change as you
change table, because it displays a comparison between the whole feature
and the model, not individual tables. Note if you use links the comparison
pane is not showing a true comparison as the cam inputs are not constant.
The comparison pane is showing the comparison using constant values
for the cam timings.

2 Click Models to select the Models view. Look at the feature model and fill
model MBT_SPARK_Model and MBT_SPARK_FillModel. If you can’t view
the whole Connections diagram of MBT_SPARK_FillModel, right-click and
select Zoom To Fit.
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The linking functionality in the Feature Fill Wizard allows features and
tables to be connected to models and any expression to be connected to
feature inputs. These links can be made permanent by creating feature
models and fill models that are static snapshots of the table on finishing
the feature fill wizard (specified by the Feature model and Fill model
with links check boxes on screen 4 of the Feature Fill Wizard).

Notice that the CAM features are converted to feature models
(Exhaust_CAM_Model and Intake_CAM_Model are new feature models) and
they are connected to MBT_SPARK_FillModel.

3 Click Data Sets to select the Data Sets view. Select the dataset
MBT_SPARK_FillResults to study the gridded data, the model and feature

values for the feature fill. Click View Data in the toolbar to see the data
table view. All the links in the feature fill process are defined in this data
set — try clicking column headers to see highlighted linked input columns.
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CAGE Import Tool
Suppose that you are calibrating a similar engine at a later date. You would
build new models for this engine and then want to solve the same problems
in CAGE. The CAGE Import Tool allows you to reuse the setup from your
old CAGE session. All that is necessary to import new models on top of the
existing ones and rerun the optimizations and feature fill problems. For
example you could import new BTQ (replace BTQ), knot (replace MBT and
MBTwithSpeedLoadBoundary) and EXTEMP models from the example file
Gasoline_Project.mat as follows:

1 Select File > Import From Project.

The CAGE Import Tool appears.

2 You can choose a project file or import directly from the Model Browser if it
is open. If the Model Browser is open, the CAGE Import Tool automatically
shows the items available. Use the Import From Project File button to
select a file.
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If you are choosing a project file, a file browser dialog opens. Locate
Gasoline_Project.mat and click Open.

3 The CAGE Import Tool displays the available items. Select the items you
want to import from the list: BTQ, EXTEMP, and knot.

4 Click the Import Selected Items button.

5 The Import dialog opens displaying the items you selected for import.

• Double-click the CAGE Model Name column cells to edit item names.

• Choose to replace BTQ, EXTEMP and MBT. For knot, select Replace
from the Action list, then double-click the CAGE Model Name column
cells to open a dialog to select the correct item, MBT, to replace.

• Click OK to import the items.

Now you can run the optimization again to generate new optimal CAM
timings with new models. Export the optimization results to the INTCAM
and EXHCAM tables, and use the Feature Fill Wizard to fill the MBT_SPARK
strategy using the same steps as before.
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Diesel Engine Calibration
Case Study

This case study provides a step-by-step guide to using the Model-Based
Calibration Toolbox™ product to solve a diesel engine calibration problem.
This section includes the following topics:

Diesel Case Study Overview (p. 3-3) In this case study, you use the Model
Browser for designing experiments,
handling data, and creating,
comparing and selecting models.
You use these models in CAGE
to generate optimized calibration
tables.

Design of Experiment (p. 3-5) Setting up a modeling test plan to
design an experiment for, setting
up design constraints, and creating
candidate designs for data collection.

Modeling (p. 3-18) Building and evaluating models
to export for use in optimized
calibration.

Optimized Calibration (p. 3-32) You use CAGE to create an optimized
calibration based on the models
exported from the Model Browser.
This section is an overview of the
required steps and the benefits of
automated calibration.

Importing Models of Engine
Responses into CAGE (p. 3-35)

Importing models into CAGE.
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Defining Additional Variables and
Models (p. 3-36)

Creating additional models and
variables required to solve the
optimization problem.

Setting Up Calibration Tables to Fill
(p. 3-38)

Creating and duplicating tables to
fill with optimization results.

Setting Up the Optimization (p. 3-39) Using the Optimization Wizard to
set up the optimization.

Setting Up Constraints (p. 3-43) Setting up the required constraints
for this optimization.

Defining Variable Values (p. 3-47) Defining the operating points where
you want the optimization to run.

Running the Optimization (p. 3-50) Running the optimization and
viewing the results.

Setting Up the Sum Optimization
(p. 3-52)

Duplicating and modifying the
existing optimization for the sum
problem.

Filling Tables with Optimization
Results (p. 3-59)

Filling tables with the results of the
optimization.
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Diesel Case Study Overview

In this section...

“Introduction” on page 3-3

“Problem Definition” on page 3-3

Introduction
This case study is an example of a diesel engine control calibration, for a
six-cylinder 9.0 L common-rail diesel engine with VGT (variable geometry
turbo) and cooled EGR (exhaust gas recirculation). It is applied in an off-road
application with a very narrow engine speed range from 1600 to 2200 RPM.
The aim of the case study is to produce optimal SOI (start of injection), base
fuel, VGT, and EGR calibration schedules as a function of commanded torque
and RPM. It involves models for torque, peak pressure, equivalence ratio,
exhaust temperature, VGT speed, and EGR mass fraction. The optimization
setup in CAGE is based on an 8-mode off-road emission test, approximated to
7 mode points by neglecting the idle operating point of the engine.

The Model Browser part of the example takes you through the following steps:

1 Create a design for your experiment “Design of Experiment” on page 3-5

2 Create models from the collected data “Modeling” on page 3-18

The Model Browser section of the case study covers design of experiment,
data handling, and model construction and export. In the later CAGE browser
section of the case study you use the models to complete the optimization of
the calibration tables, see “Optimized Calibration” on page 3-32.

Problem Definition
Produce optimal calibration tables in speed and torque for

Best injection timing soi

Best fuel quantity basefuelmass

Best fuel pressure fuelpress
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Best VGT grackmea

Best EGR egrpos, egrmf

Minimize mode-weighted brake specific fuel consumption, subject to
constraints on

• Turbo speed (vtgrpm)

• Cylinder pressure (pkpress)

• Exhaust equivalence ratio (exheqr)

To solve this problem, you must first use the Model Browser part of the
Model-Based Calibration Toolbox™ product to design an experiment for
collecting data, and then create models based on that data. You will use the
resulting models in the CAGE Browser part of the toolbox to produce optimal
calibration tables.
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Design of Experiment

In this section...

“Introducing Design of Experiment” on page 3-5

“Constraining the Design” on page 3-8

“Creating Candidate Designs” on page 3-15

“Data Collection” on page 3-16

Introducing Design of Experiment
Creating a design in the Model-Based Calibration toolbox comprises several
steps. First, you need to enter the ranges and names of the variables being
used and choose a default model. Then you can create an initial design and
set up the constraints on the space. These constraints will be the same for all
designs. From this constrained design, you can create a series of child designs
adding varying numbers of points and using different construction techniques.
You can choose the final design by comparing the statistics of the various child
designs, while considering how many test points you can afford to run.

Variables are

measrpm Engine speed (rpm)

basefuelmass Fuel quantity per injection (mg)

fuelpress Fuel pressure (MPa)

grackmea VGT rack position (%)

egrlft EGR valve position (mm)

soi Start of injection (deg ATDC)

You need to set up a test plan before you can make designs. This experiment
is set up as a two-stage test plan with start-of-injection (SOI) sweeps at the
local level and the other five variables at the global level.

Open the example session with the test plan set up as follows:
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1 Start the Model Browser by typing mbcmodel at the MATLAB® command
line.

2 Select File > Open Project. Locate the example session with the test plan
set up, Diesel_testplan.mat, in the mbctraining directory and double
click to load the project.

3 Click the Two-Stage test plan node in the model tree to see the test plan
diagram.

3-6



Design of Experiment

4 Double-click the Global Inputs block in the diagram to set the ranges of the
inputs. You should set up the ranges before designing an experiment. You
can enter the ranges in the min/max boxes to include the most extreme
values you want to set for each variable. Check the ranges match those
shown in the following example, then click OK.

5 Double-click the Global Model block in the test plan diagram to view the
model type. For this exercise, leave the model type at the default, which is
a quadratic in all factors. Click OK to dismiss the dialog.

Remember that the statistical usefulness of different designs depends on the
model type. For example, if you think you need cubic instead of quadratic in
EGR, the number of points required rises dramatically and this has a highly
adverse effect on the statistical quality of the designs.

Some possible models are

• Cubic polynomial, quadratic in fuel pressure: 41 terms

• Cubic polynomial, quadratic in fuel pressure and EGR: 31 terms

However, you do need to bear in mind that the final model will probably not
be either of the possibilities listed here, because some terms will have been
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removed, or it might even be an RBF (radial basis function). You choose the
most suitable model you can in order to construct a design, then when you
have collected the data you might find that a different model type produces
the best fit.

Constraining the Design
These are the constraints you want to apply to the design space:

• basefuelmass

- Maximum 200 at 1600 rpm, 175 at 2200 rpm

• fuelpress

- Range 90 - 110 at 1600 rpm

- Range 120 - 160 at 2200 rpm

• grackmea

- Range 0.2 - 0.6 at 1600 rpm

- Range 0.4 - 0.9 at 2200 rpm

The tables here are very simple: one output value defined at the min and max
settings of RPM. The final constraint is a cube within the base fuel mass-fuel
pressure-VGT space that moves and changes size as RPM is altered.

To add a constraint to a design,

1 First open the Design Editor by right-clicking the Global Model block in the
test plan diagram and selecting Design Experiment.

2 Click the New Design button in the toolbar or select File > New
Design. A new node called Linear Model Design appears.

The new Linear Model Design node is automatically selected. An empty
Design Table appears because you have not yet chosen a design, unless you
have previous design views from other sessions. The Design Editor retains
memory of view settings.

3 Select Edit > Constraints from the Design Editor menus.
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4 The Constraints Manager dialog appears. Click Add.

5 The Edit Constraint dialog with available constraints appears. Make sure
the default 1D Table is selected from the Constraint Type drop-down
menu. These are easier to set up than linear constraints, although working
out the linear constraint numbers might be worthwhile for larger problems
as it is faster.

6 You can select the appropriate factors to use. For the first constraint,
choose measrpm, basefuelmass, and the inequality <= from the menus.

You can define the constraint by typing values in the edit boxes or by
moving the large dots (clicking and dragging them) to define a boundary.
For this constraint, you want to define two points.

7 Select the Table Editor tab and edit the Number of breakpoints to
2, and click Span Factor Range.

8 On the Graphical Editor tab, click Move Points , then click and drag
the right point (where measrpm =2200) down to basefuelmass =175. You
can also enter the values in the measrpm and basefuelmass edit boxes,
or in the table on the Table Editor tab.

9 Click to select the left point. Make sure the values are 1600 in the
measrpm edit box and 200 in the basefuelmass edit box. The dialog
should look like the following example.
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This constraint defines the range of basefuelmass in terms of RPM to
within these bounds: maximum 200 at 1600 rpm, 175 at 2200 rpm.

10 Click OK to return to the Constraints Manager.

11 In the Constraints Manager, click Duplicate four times. This saves you
setting up tables with only two points for the next constraints. Click to
select the first new constraint, then click Edit.

You need to add constraints that define each of the following:

fuelpress

• Range 90 - 110 at 1600 rpm

• Range 120 - 160 at 2200 rpm

You achieve this by defining two constraints. In the first, the two table
points define a fuelpress minimum of 90 at 1600 rpm and a minimum of
120 at 2200 rpm. In the second, the two table points define a fuelpress
maximum of 110 at 1600 rpm and a maximum of 160 at 2200 rpm.

12 In the Edit Constraint dialog, change the Y factor to fuelpress and leave
the X factor as measrpm.

13 Change the Inequality to >=.
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14 Select the left point (where measrpm = 1600) and enter 90 in the fuelpress
edit box.

15 Select the right point (where measrpm = 2200) and enter 120 in the
fuelpress edit box. The dialog should look like the following.

Click OK to return to the Constraint Manager.

16 Select the next constraint and click Edit. Edit the constraint to define a
fuelpress maximum of 110 at 1600 rpm and a maximum of 160 at 2200
rpm, as shown.
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Click OK to return to the Constraint Manager.

17 Complete the other constraints in a similar way.

grackmea

• Range 0.2 - 0.6 at 1600 rpm

• Range 0.4 - 0.9 at 2200 rpm

This is achieved as shown in the following two constraints.
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18 The Constraints Manager should contain all five constraints as shown.
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Click OK to return to the Design Editor.

19 Right-click a Design Editor view and select Current View > 3D
Constraints to view the constrained design space.
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Creating Candidate Designs
Number of points

• How many do you have time for? When you consider the number of points,
you need to remember that a sweep will be done at each point, and this
will take some time.

• Do you need to allow time to fix problems or redo experimental points that
can’t be achieved due to combustion stability constraints?

Design type

• V-optimal: reduces average prediction error
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V-optimal designs are often the preferred choice for engine testing. Optimal
designs tend to push points to the edge, so they should give good coverage
of the 1600 and 2200 RPM points while also allowing good modeling of the
entire experimental region.

Create an optimal design with 65 points to compare to the example design.

1 Click Optimal Design in the toolbar. The Optimal Design dialog opens.

2 Enter 65 in the Total number of points edit box.

3 Select V-Optimal from the Optimality criteria drop-down menu and
click OK.

4 The Optimizing Design dialog appears. Click Accept when iterations are
not producing noticeable improvements; that is, the graph becomes very
flat.

5 Examine the design points and compare to the constraint space by
right-clicking the 3D Constraints view and selecting Split View > 3D
Design Projection.

The final design used contained 65 points, for a quadratic in fuel pressure and
EGR lift. V-optimal value = 0.302.

Data Collection
Data was generated by a Ricardo WAVE model using the experimental design.
MATLAB and Simulink® simulation tools control WAVE. Simulation tools
support multiple WAVE processes retrieving test points from a central store.
Average simulation time was 8 points (30 engine cycles each) per hour using
four processors in parallel. Transient test results were then processed to
extract steady-state results.

You can use the toolbox to import test data, view it, sort it into tests, verify
ranges, filter out unwanted points, and select data for modeling. For details
on any of these processes, see the examples in the gasoline case study
section “Importing and Filtering Data” on page 2-18, and for comprehensive
information on data handling in the toolbox, see “Data” in the Model Browser
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documentation. See also the examples in the Chapter 7, “Tutorial: Data
Editor”.

The example project provided (Diesel_testplan.mat) contains the filtered
data attached to the test plan.
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Modeling

In this section...

“Overview of Modeling Process” on page 3-18

“Building Models” on page 3-19

“Building and Evaluating Alternative Models” on page 3-21

“Creating Boundary Models” on page 3-27

“Export to CAGE” on page 3-30

Overview of Modeling Process
Outline of modeling steps you will cover in this example:

1 Build the models specified in the test plan.

2 Review local fits. Is the local model flexible enough?

3 Eliminate outliers.

4 Try alternative local models.

5 Review global fits. Is the global model flexible enough?

6 Eliminate outliers.

7 Try alternative global models.

8 Select best models.

9 Clean up tree.

10 Create boundary models.

11 Export models to file or CAGE.

See “Introduction to Two-Stage Modeling” on page 2-6 and “How Is a
Two-Stage Model Constructed?” on page 2-27 for information about two-stage
models (in the Help Browser you can right-click and select Back to return
to this page).
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Building Models
The file Diesel_testplan.mat contains a test plan where the model inputs
and types are set up, and the data is loaded. You have set up the input ranges
before designing experiments. Now you can build models of the responses.

1 Double-click the Responses block to select data signals for modeling and
build response models.

2 The Data Wizard appears. You want to use all selected data, so click Next
on the Select Data screen.

3 Select the check box to Copy range of the signals, then match up model
input names with data signal names one pair at a time and click the button
to associate each pair. As the input signal names are set up to match
the data signal names, each model input factor you select is matched
automatically in the data signals list, so you can then click the button to
select the data signal and copy the range. If the names did not match you
would have to select data signals manually.

Click Next.
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4 You can build one response at a time or set up several at once on the Select
Responses screen of the Data Wizard. Click Add after selecting each of
these responses:

• egrmf

• eqrexh

• pkpress

• tq

• vtgrpm

5 Clear the check box Open Data Editor on completion. If you left this
check box selected you could choose to review the data selected for modeling
in the Data Editor. Click Finish.

The models appear in the model tree in the All Models pane of the Model
Browser.
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Building and Evaluating Alternative Models

1 Review the local fits. Start by selecting the local model node (Quadratic)
under the tq response.

The local model view appears.
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2 Look through the tests to inspect the fits. Use the Test controls.

Look for trends in the residuals in the upper plot. Evenly distributed
residuals are a good sign; trends in the residuals can indicate that the
model is not flexible enough and you should try more flexible model types.
A trend in magnitude of residuals indicates that transform or covariance
modeling might be needed.

3-22



Modeling

3 To quickly identify problem tests with high errors, click RMSE Plots in
the toolbar (or View menu). Right-click to turn the test number display on,
then inspect tests with high error values in the local model view. Strongly
outlying residuals should be investigated.

4 Consider removing outliers to improve fits if some points are badly
distorting the fit. Engineering judgment is required to judge whether
suspect data should be removed. Be careful not to remove outliers without
good reason. If you keep removing points you can always get a better fit,
but your aim is to achieve a model that predicts the data well. You can click
the Data tab to inspect data variables for suspect tests.

5 Use the same principles to review the global fits. For example, expand the
local model node (Quadratic) in the model tree and click Beta_1.
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You can right-click outliers (or any point) in the plots to see a plot of the
test and inspect the variables. For information on how the local and global
models relate to each other, see “How Is a Two-Stage Model Constructed?”
on page 2-27

6 At both local and global level, create alternative model types to compare.

a From the response node, create alternative local models to compare.

b From the local nodes, create alternative response feature models to
compare.

c From the global nodes, create alternative child global models to compare.

To create models one at a time, click New from the response node to create
a new local model node, or from the global node to create new child global
model nodes, etc. Choose different model types from the Model Setup
dialog, or you can change any existing model by selecting Model > Set Up.
There are step-by-step instructions for doing this in the gasoline case study,
see “Create Multiple Models to Compare” on page 2-50. You could also work
through the modeling tutorial for more guided examples of how to select
models, see Chapter 5, “Tutorial: Model Quickstart ”.

When you have built a selection of different model types as child nodes of,
say, a global model node, you can click the parent model node and select
Model > Make Template. Save the template to a suitable directory, then

you can use Build Models ( in the toolbar) to automatically build the
same selection of child model types for any other model.

Remember that from any parent node, you can see a list of statistical
comparisons for all the child nodes in the lower list pane, along with
information such as the number of parameters.
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Review the fits graphically as well. Search for the best fit but be careful
not to overfit. You can increase the number of terms in a model until every
point is exactly on the line, but the predictive power of that model will be
very low. PRESS RMSE can be the most helpful single statistic you can
use to search for the best fit relative to the number of terms in the model.
However, you should not rely on any single statistic, but use a variety
of criteria and especially the graphical tools available for comparison of
models in the Model Evaluation tool when you click Select. For detailed
guidance see in the Model Browser documentation.

Make use of the Stepwise tool ( in the toolbar for linear models) to
automatically search for a good fit with the minimum number of useful
model terms. You can set Stepwise to run automatically when you create
models (for example, select Min PRESS from the Stepwise drop-down
menu in the Model Setup dialog) or you can open the Stepwise window
after the model is built. Remember that modeling is a tradeoff — too few
parameters means the shape of the surface cannot be captured, while too
many parameters gives a risk of overfitting.

7 Create two-stage models by clicking Select at the Local node. You must
first select a best model for each response feature (global) model, if you
have created alternatives. If you have created alternative response feature
models, when you click Select you can choose the best combination of
response features in the Model Selection window. There are many graphical
tools available here, such as surface plots, contour plots, and movies.
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8 Try MLE (Maximum Likelihood Estimation). You can choose to calculate
MLE in the dialog that appears immediately after building a two-stage
model, or you can click Cancel and choose to try MLE later. You can use
the MLE toolbar button to calculate an MLE model any time. This process
refits, taking proper account of the correlation between different response
features. Once you have an MLE model, you can click Select from the local
node to compare it with the univariate two-stage model. You can choose
the univariate model as best here if you want; this is the way to "go back"
from MLE.

9 Searching for a good fit often results in large numbers of models. To discard
all but the models you chose as best, select File > Clean-up Tree.

For guidance, look at the models in the example finished project,
Diesel_project.mat, found in the mbctraining directory.
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Creating Boundary Models
You can create a boundary model at the test plan node. A model describing
the limits of the operating envelope can be useful when you are evaluating
optimization results.

1 Select the test plan node in the model tree.

2 Select TestPlan > Boundary Constraints.

The Boundary Constraint Editor opens.

3 Click Make Boundary Constraint in the toolbar. A dialog box opens
where you can choose to build a boundary model of the response, local,
or global inputs. First, make a model of the response boundary. Select
Response, and click OK.

A dialog box opens where you can select constraint inputs.

4 Set the Constraint type to Convex Hull. Leave only the soi and measrpm
check boxes selected, as shown in the following figure.
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Click OK, and then click OK again in the next dialog box because there
are no other parameters to set for this constraint.

A Convex Hull(soi,measrpm) child node appears under the Response
node.

5 Select View > Current View > Pairwise Projections (or use the toolbar
button). You can see pairwise projections to view the boundary across all
combinations of factors.

6 Next, make a model of the global boundary. There is already a Global
node with an empty child node under it. Select this node, G_Boundary,
then select Constraint > Set Up.

A dialog box opens where you can select constraint inputs.

7 Set the Constraint type to Convex Hull. Leave only the measrpm and
grackmea check boxes selected. Click OK.

The name changes to Convex Hull(measrpm, grackmea), but the
constraint is not complete yet.

8 Select Constraint > Full Constraint Fit. Click OK in the next dialog box
as there are no other parameters to set for this constraint. The constraint
model appears in the pairwise view. The tree should look as shown in the
following figure.

9 Click Duplicate constraint in the toolbar twice. Two new convex hull
child nodes appear under the Global node.
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10 Select the first new node, and select Constraint > Set Up. The Constraint
Setup dialog box appears.

a Leave only the measrpm and fuelpress check boxes selected. Click OK.

b Select Constraint > Full Constraint Fit. Click OK in the next dialog
box as there are no other parameters to set for this constraint.

11 Select the second new node, and select Constraint > Set Up. The
Constraint Setup dialog box appears.

a Leave only the measrpm and basefuelmass check boxes selected. Click
OK.

b Select Constraint > Full Constraint Fit. Click OK in the next dialog
box as there are no other parameters to set for this constraint.

12 You can select a combination of models as best. Select each of the Global
and Response models in turn, and select Constraint > Add to Best (also
in the toolbar). Make sure both the Response and Global nodes are also
added to best.

You can delete the Local node as you are not interested in the local
boundary.

Make sure all remaining icons are blue, indicating they are included in the
combination of best models, as shown in the following figure. For more
information see .

13 Now, select the root node Two-Stage to see the combination of all
constraints in the pairwise view, as shown in the following figure.
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14 Close the Boundary Constraint Editor to return to the Model Browser.
After they are calculated, the boundary constraints remain part of the
test plan unless you delete them.

Export to CAGE
You can export your models to file, to CAGE, to the workspace or to Simulink®.
This capability makes models easy to share across engineering groups. You
can do such exports in the Model Browser by selecting File > Export. The
models exported depend on the model node you have selected in the tree. To
export all models in the test plan, select the test plan node.

Note For this example, you use CAGE to import the models.
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You use the example models in the CAGE part of the Model-Based Calibration
Toolbox™ product to produce optimized calibration tables. Proceed to the
next section for instructions.
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Optimized Calibration

In this section...

“Problem Definition” on page 3-32

“Benefits of Automated Calibration” on page 3-33

Problem Definition
This section describes the creation and optimization of calibration tables
for the diesel case study. You use the models created in the Model Browser
section of this case study. An example file is provided.

The problem to solve is to produce tables in speed and torque for

Best injection timing soi

Best fuel quantity basefuelmass

Best fuel pressure fuelpress

Best VTG grackmea

Best EGR egrlft

Also, to minimize brake specific fuel consumption, subject to constraints on

• Turbo speed (vtgrpm)

• Cylinder pressure (pkpress)

• Exhaust equivalence ratio (exheqr)

For this case study, you use models produced in the Model Browser to generate
calibrations in CAGE. You cover the following steps:

1 Load models of engine responses. See “Importing Models of Engine
Responses into CAGE” on page 3-35.

2 Define additional models and variables required by optimization strategy.
See “Defining Additional Variables and Models” on page 3-36.
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3 Set up tables. See “Setting Up Calibration Tables to Fill” on page 3-38.

4 Set up the optimization to provide feasible starting points for the sum
problem. See “Setting Up the Optimization” on page 3-39.

5 Define constraints. See “Setting Up Constraints” on page 3-43.

6 Define optimization operating points. See “Defining Variable Values” on
page 3-47.

7 Run the optimization and view results. See “Running the Optimization”
on page 3-50

8 Duplicate and modify the optimization to create a sum optimization
using the previous solutions as starting points. See “Setting Up the Sum
Optimization” on page 3-52

9 Fill tables from optimization results. See “Filling Tables with Optimization
Results” on page 3-59.

For guidance, you can look at the example finished project,
Diesel_optimization.cag.

Benefits of Automated Calibration

• You can move the table-filling process away from the test bed.

• You can regenerate calibrations when objectives, constraints, or calibration
table layouts change, without additional testing.

• You can explore tradeoff possibilities interactively.

• You can produce initial calibrations using engine simulation software,
before hardware is available.

CAGE can provide both automatic and interactive calibration optimization.
You can trade off multiple objectives, deal with multiple constraints, and you
can examine optimizations point-by-point or over a drive-cycle. CAGE can
provide solutions for these example applications:
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• Example control applications

Emissions-constrained BSFC optimization over drice cycles producing
calibrations such as:

- Optimal fuel injection timing schedule

- Optimal fuel injection quantity schedule

- Optimal EGR valve position and EGR mass fraction schedule

- Optimal spark timing schedule

- Optimal dual-independent variable valve timing schedules

• Estimation problems

- Torque

- Emissions

- Air flow and manifold pressure

- Intake valve temperature

- Borderline spark
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Importing Models of Engine Responses into CAGE
1 Start CAGE by typing cage at the MATLAB® command line.

2 Select File > Import > From Project. The CAGE Import Tool appears.

3 Select File > Select Project File or click the toolbar button. Locate the
example model file created in the Model Browser, Diesel_project.mat,
in the mbctraining directory, and click Open.

4 You can select from a list of models in the file. Select Response from the
Type drop-down list to filter the model list.

5 Select all the response models in the list by Shift+clicking.

6 Click the toolbar button Import selected items.

7 In the following Import dialog box, click OK to import the models.

8 Close the Import Tool and click the Models button to select the Models
view in CAGE. You should see the models in the list. The selected model is
displayed in the other panes.

You can also:

• Export models directly from the Model Browser to CAGE when both are
open.

• Use the CAGE Import Tool to import models directly from the Model
Browser.

• Use the CAGE Import Tool to import models and other calibration items
(tables, optimizations, tradeoffs, data sets, features) from any project file
created in CAGE or the Model Browser. This capability can help you use
existing projects to speed up the setup of new sessions.

• Export models to a file, which you can import to CAGE by selecting
File > Import > Model.
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Defining Additional Variables and Models
Looking at the problem definition, you need to define some additional
variables and models for this optimization. You want to minimize BSFC, but
this is not a model output. You need to fill tables against speed and torque,
but torque is not an input for the models. The solution to this is to create
function models. You can then use a torque constraint and the BSFC function
model in the optimization. To implement the torque constraint, you need to
define a new variable for desired torque, tq_desired.

Follow these steps:

1 Select File > New > Variable Item > Variable. The Variable Dictionary
view appears.

a Rename the new variable tq_desired.

b Set the range of this variable to be minimum 0 and maximum 1500.

c Edit the set point to 600 Nm

2 Select File > New > Function Model.

a Enter bsfc = 5400 / pi * basefuelmass / tq and click Next.

Assuming: base fuel mass [mg/inj], Tq [Nm], 6 cylinders, 4 stroke

b Select Automatically assign/create inputs. It is important to check
for typos or this step can create unintended new inputs. Click Finish.

The Models view appears.

3 This optimization requires a constraint on the air/fuel ratio (AFR).
However, as you could not model AFR directly you need to create a function
model that relates equivalence ratio to air/fuel ratio. Then you can
constrain AFR. To do this, select File > New > Function Model.

a Enter afr = 14.46/eqrexh and click Next.

b Select Automatically assign/create inputs and click Finish.

4 Select File > New > Variable Item > Variable. The Variable Dictionary
view appears.
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a Rename the new variable afr_min.

b Set the range of this variable to be minimum 0 and maximum 100

c Edit the set point to 50
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Setting Up Calibration Tables to Fill
1 Set up a new 2-D table. Select File > New > 2D Table.

2 Name the table soi_best.

3 Select measrpm and tq_desired from the Y Input and X Input drop-down
menus.

4 Enter 11 rows and 11 columns.

5 Enter 0 for the initial value.

6 Click OK to create the table.

Look at the Tables tree on the left. Note that the normalizers appear as
calibratable items in their own right, and as descendants (child nodes) of
their tables.

7 Once you create a table, you can duplicate it to create more tables that
share the same breakpoints. Click soi_best in the tree, then select
Edit > Duplicate soi_best. Repeat until you have four new tables, and
rename them as follows:

a basefuelmass_best

b fuelpress_best

c grackmea_best

d egrlft_best
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Setting Up the Optimization
CAGE provides a flexible optimization environment. You can define the
objectives, the constraints, and the points where the optimization is carried
out.

The objective is to minimize weighted BSFC over a set of points, subject to a
set of constraints. This is a constrained single objective optimization problem.

You solve this problem in two parts:

1 Run an initial optimization to explore the problem point-by-point in order
to obtain good starting points for the sum optimization.

2 Use the solutions from the initial optimization as the start points to run
the sum optimization over the drive cycle to find optimal control settings.
Use these results to fill calibration tables.

CAGE has several built-in optimization routines and the capacity for you to
write your own. In this case study, you use foptcon. This algorithm is a
modified version of fmincon from the Optimization Toolbox™ product. In
CAGE, you can use the algorithm to minimize or maximize an objective
function.

1 Select File > New > Optimization. The Optimization Wizard appears.

foptcon is selected by default, and this is the optimization algorithm you
will use for this example. This algorithm specifies a single objective in the
Objectives column.
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2 Click Next.

3 Here you set up your options as follows:

a Increase the number of free variables to 5

b Increase the number of constraints to 6

Click Next.

4 Select the free variables.
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Select in turn each of the following free variables and click the button to
select them:

a soi

b basefuelmass

c fuelpress

d grackmea

e egrlft

Click Next.

5 Select bsfc from the list of models on the right and click the button to select
this model for the objective. Leave the objective type set to Minimize.
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Click Finish.

The Optimization view appears. You have not yet set up your constraints, so
you can add them here.
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Setting Up Constraints
This case study problem has CAGE model constraints on the following
quantities (which you will set up next):

• tq_desired

• vtgrpm

• pkpress

• afr

• soi

• grackmea

• fuelpress

• basefuelmass

In the Optimization view these constraints are shown as follows.

You can edit constraint names to aid analysis in other Optimization views
(right-click, or double-click to use the Edit Constraint dialog box).

Set up these constraints as follows:

1 Double-click to edit the first constraint to tq <= tq_desired. The
Constraint Editor appears.

a Leave the Constraint type as Model.

b Select tq in the Input model list

c Select <= as the Constraint type

d Select the CAGE item radio button
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e Select Show variables from the drop-down list.

f Select tq_desired in the variable list. The dialog should look as shown.

g Click OK to return to the Optimization view.

2 Similarly, double-click to edit the next constraint as shown: tq >=
tq_desired.
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3 Repeat to set up the constraint afr >= afr_min, as shown.

4 Repeat to set up the constraint vtgrpm <= 128000, as shown. Note, here
you enter a value in the Constant edit box, rather than select a variable
from the CAGE item list.

5 Repeat to set up the constraint pkpress <= 18000000, as shown. Note,
here you enter a value in the Constant edit box.
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6 Repeat to set up a boundary model constraint, as shown in the following
figure.

a Leave the Constraint type as Model.

b Select tq in the Input model list.

c Select Boundary constraint in the Evaluate quantity drop-down list.

d Click OK to return to the Optimization view.
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Defining Variable Values
You need to define the set of drive cycle points where you want the
optimization to run. To do this you use the Input Variable Values pane in
the Optimization view.

1 Increase the Number of runs to 7. Click the buttons or enter the value in
the box. The number of rows in the fixed and free variables panes increases
to 7. The default values are the set point of each variable. Leave the initial
values for the free variables at the defaults.

2 You can enter or copy values into the Fixed Variables pane to define the
fixed variable values at each point where you want the optimization to
run. You can copy all the variable values from a text file, or from the Help
Browser copy each column in turn. Copy and paste the following values
into the measrpm column in the Fixed Variables pane.

measrpm

2200

2200

2200

2200

1600

1600

1600

3 Copy and paste the following values into the tq_desired column in the
Fixed Variables pane.

tq_desired

1263

947

632

126
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1550

1163

775

4 Copy and paste the following values into the afr_min column in the Fixed
Variables pane.

afr_min

25.5

27.75

30.0

0

22

22.5

23
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The Fixed Variables pane should look as shown. You have specified the
speed and torque values you want for each run, and also the minimum
air/fuel ratio (AFR) at each N, TQ point.

If you wished to constrain the free variables more than the range defined
in the variable dictionary, you could select Optimization > Edit Free
Variable Ranges. Leave the defaults for this problem.
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Running the Optimization
Now you can run the optimization. You have set up objectives, constraints
and a set of operating points.

1 Click Run Optimization in the toolbar.

2 When the optimization is complete, the view switches to the new child node,
Optimization_Output, in the Optimization tree under the Optimization
node. View the results.

3 Look through the solutions at different operating points by clicking cells in
the output table. Compare with the gasoline example, where regions that
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do not meet the constraint are yellow in the graphs — in this case the
torque inequality constraints cause all the graphs to be yellow, because
these constraints produce a feasible contour in the free variable space, and
any deviation off this contour is infeasible.

4 Split the view to display the constraint graphs, and scroll through them to
see each constraint in relation to the solutions.
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Setting Up the Sum Optimization

In this section...

“Setting Up Initial Values and Sum Objective” on page 3-52

“Creating the Brake Specific NOx Constraint” on page 3-54

“Setting Weights for the Sum Objective and Constraint” on page 3-55

“Set Parameters and Run Optimization” on page 3-57

Setting Up Initial Values and Sum Objective
The initial point-by-point optimization was designed to obtain good starting
points for the sum optimization. Now, you can duplicate and modify that
initial optimization to run the sum problem. You use the solutions from the
initial optimization as the start points to run the sum optimization over the
drive cycle to find optimal settings. You use these results to fill calibration
tables.

1 Right-click the initial optimization node, and select Duplicate.

2 Click to select the new optimization, press F2, and enter Sum_optimization
as the new name.

3 Import initial values from the output of the first optimization. Select
Optimization > Import From Output.
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a Select the first Optimization_Output (there are two because the
duplicate optimization also contains an output node).

b Click OK to close the Import From Output dialog box and import the
output values for all the free and fixed variables. These variables are the
starting values for the new optimization. Review the new values in the
Input Variable Values pane in the Optimization view.
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4 Select Optimization > Convert to Single Run. In the Input Variable
Values pane, there is now a single run with 7 values, instead of the previous
7 runs of single values.

5 To run a sum optimization over the drive cycle, you must convert the
objective to a sum objective. Double-click Objective1 in the Objectives
pane to open the Edit Objective dialog box.

a Select Sum Objective in the Objective type drop-down menu.

b Select bsfc from the Model list, and verify that Minimize is selected
for the objective type.

c Click OK to close the dialog box.

Now your sum optimization is ready to run. Before you run it, however, see
the next section to create a brake specific NOx constraint.

Creating the Brake Specific NOx Constraint
In this optimization, you will use brake specific NOx to constrain the results.

BSNOx is defined as:

BSNOx
w NOx

w N TQ

i ii
N

i i ii
N

= =

=

∑
∑
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1
2

60000
π

You implement this as a weighted sum constraint in CAGE. You create a
function model that represents the following term of the BSNOx sum:

BSNOx term
NOx

w N TQi i ii
N

_ =
=∑2

60000 1
π

The denominator of this term represents the weighted power (speed x torque)
over the drive cycle, which is constant for this optimization. This constant
can be calculated as follows:
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Therefore the function model to be created is

BSNOx term
NOx

_
.

=
159 5573

Create the function model as follows:

1 Select File > New > Function Model.

2 Enter BSNOX = 3600*1000*NOX/159.5573, and click Next.

The NOx model is in kilograms per hour, and you want to calculate BSNOx
in grams per second, so multiply NOx by 3600*1000.

3 Select Automatically assign/create inputs. It is important to check for
input errors or this step can create unintended new inputs. Click Finish.

The Models view appears with the new function model. Now, you can use
this function model to create a weighted sum constraint.

Setting Weights for the Sum Objective and Constraint
To create a weighted sum constraint:

1 Click the Optimization button to return to the Optimization view.

2 Right-click in the Constraints pane, and select Add Constraint. The Edit
Constraint dialog box appears.
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3 Select Sum Constraint from the Constraint type drop-down menu.

4 Enter BSNOX in the Constraint name edit box.

5 Select BSNOX from the Input model list.

6 Enter 3 in the Constraint bound edit box, and press Enter. Verify that
the Constraint description shows Weighted sum of BSNOX <= 3, to
constrain the weighted sum to less than 3g/kWh.

7 Click OK to create the constraint, and return to the Optimization view.

Set the weights in the Optimization view as follows:

1 Enter 7 in the Number of values edit box for the Objective1_weights
column.

2 Enter, or copy and paste, the following values into the Objective1_weights
column in the Fixed Variables pane.

Objective 1 Weights

0.5
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Objective 1 Weights

0.15

0.15

0.05

0.05

0.05

0.05

These values sum to 1.

3 Similarly, enter 7 in the Number of values edit box for the
Constraint1_weights column.

4 Copy the following values into the Constraint1_weights column in the
Fixed Variables pane.

Constraint 1 Weights

0.15

0.15

0.15

0.1

0.1

0.1

0.1

These values sum to 0.85.

Set Parameters and Run Optimization
To alter parameters and then run the optimization:

1 Click Set Up and Run Optimization in the toolbar.
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2 Change the following parameters in the Optimization Parameters dialog
box:

• Maximum iterations = 500

• Maximum function evaluations = 2000

• Function tolerance = 1e-7

• Variable tolerance = 1e-7

Click OK to close the dialog box, and the optimization runs.

3 When the optimization is complete, the view switches to the updated
child node, Optimization_Output_1, in the Optimization tree under the
Sum_optimization node. (Recall that you duplicated an optimization,
including its output node). View the results. For guidance see “Interpreting
Sum Optimization Output”.
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Filling Tables with Optimization Results
You can use the optimization results to fill the tables you created.

1 From the optimization output node, select Solution > Fill Tables.

The Table Filling Wizard appears.

2 Shift-click to multi-select all the following tables and click the button to
add all your tables to the filling list:

• soi_best

• basefuelmass_best

• fuelpress_best

• grackmea_best

• egrlft_best

Click Next.
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3 Match the following pairs of an output from the right list of optimization
results with a table on the left.

• soi with soi_best

• basefuelmass with basefuelmass_best

• fuelpress with fuelpress_best

• grackmea with grackmea_best

• egrlft with egrlft_best

You can double-click in the right list to select an item, and CAGE
automatically moves focus on to the next table in the left list. For example,
with the soi_best table selected in the left list, double-click soi in the right
list, then you can double-click basefuelmass for the next table, and so on.

4 Click Finish.

A dialog appears indicating whether the tables have been filled successfully.
Click Close.
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5 Switch to the Tables view to view the filled tables. Click Tables in the
Data Objects pane, and select the tables in turn to view the results.

Look at the example finished project, Diesel_optimization.cag.
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4

Command-Line Interface
to the Model-Based
Calibration Toolbox™
Product

This section contains the following topics:

Introduction to the Command-Line
Interface (p. 4-2)

An outline of the command-line
interface to the toolbox.

Processes You Can Automate (p. 4-3) A description of the intended process
you can automate with the command
line interface to the Model-Based
Calibration Toolbox™ product.

Understanding Model Structure
(p. 4-6)

A description of the way projects, test
plans, and model objects fit together.

How the Model Tree Relates to
Command-Line Objects (p. 4-9)

Illustrations from the Model Tree
in the Model Browser to show how
projects, test plans. and model
objects fit together.

Command-Line Demos (p. 4-14) A description of the examples
provided to show how to put
commands together.
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Introduction to the Command-Line Interface
The Model-Based Calibration Toolbox™ product is a software tool for
modelling and calibrating powertrain systems. The command-line interface
to the Model-Based Calibration Toolbox product enables the design of
experiments and modeling tools available in the toolbox to be accessible from
the test bed.

You can use these commands to assemble your specific engine calibration
processes into an easy to use script or graphical interface. Calibration
technicians and engineers can use the custom interface without the need for
extensive training. This system enables:

• Transfer of knowledge from the research and development engineers into
the production environment

• Faster calibration

• Improved calibration quality

• Improved system understanding

• Reduced development time

See Model-Based Calibration Toolbox Demos for command-line examples.
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Processes You Can Automate
The following description illustrates an example engine modeling process you
can automate with the command-line Model-Based Calibration Toolbox™
product. You can assemble the commands for these steps into an easy-to-use
script or graphical interface. This is a guideline for some of the steps you
can use to model engine data.

1 Create or load a project — CreateProject; Load

2 Create a new test plan for the project using a template set up in the Model
Browser — CreateTestplan

3 Create designs that define data points to collect on the test bed —
CreateDesign. Work with classical, space-filling or optimal designs:
CreateConstraint; CreateCandidateSet; Generate; FixPoints; Augment.

4 Create or load a data object for the project and make it editable —
CreateData; BeginEdit

5 Load data from a file or the workspace — ImportFromFile;
ImportFromMBCDataStructure

You can instead specify the required data file when you call CreateData;
you must still call BeginEdit before you can then make changes to the data.

6 Work with the data:

• Examine data values — Value

• Modify the data to remove unwanted records — AddFilter; AddTestFilter

• Add user-defined variables to the data — AddVariable

• Add new data — Append

• Group your data for hierarchical modeling by applying rules —
DefineTestGroups; DefineNumberOfRecordsPerTest

• Export your data to the workspace — ExportToMBCDataStructure

7 Save your changes to the data, or discard them — CommitEdit;
RollbackEdit
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8 Designate which project data object to use for modeling in your test plan —
AttachData

9 Create models for the data; these can be one- or two-stage models and can
include datum models — CreateResponse

10 Work with your models:

• Examine input data and response data — DoubleInputData;
DoubleResponseData

• Examine predicted values at specified inputs — PredictedValue;
PredictedValueForTest

• Examine Predicted Error Variance (PEV) at specified inputs — PEV;
PEVForTest

• Examine and remove outliers — OutlierIndices; OutlierIndicesForTest;
RemoveOutliers; ; RestoreData

• Create a selection of alternative models — CreateAlternativeModels

• Choose the best model by using the diagnostic statistics —-
AlternativeModelStatistics; DiagnosticStatistics; SummaryStatistics

• Extract a model object from any response object (Model Object), then:

– Fit to new data (Fit)

– Create a copy of the model, change model type, properties and fit
algorithm settings (CreateModel; ModelSetup; Type (for models);
Properties (for models); CreateAlgorithm)

– Include and exclude terms to improve the model (StepwiseRegression)

– Examine regression matrices and coefficient values (Jacobian;
ParameterStatistics)

– If you change the model you need to use UpdateResponse to replace
the new model back into the response in the project.

• For two-stage test plans, once you are satisfied with the fit of the local
and response feature models (and have selected best models from any
alternatives you created), you can calculate the two-stage model —
MakeHierarchicalResponse.
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• Now you can also examine the predicted values and PEV of the two-stage
model.

• You can export any of these models to MATLAB® or Simulink® software —
Export

This overview is not an exhaustive list of the commands available. For
that, see “Function Reference” and “Commands — Alphabetical List” in the
Model-Based Calibration Toolbox Reference.
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Understanding Model Structure

In this section...

“Overview of Model Structure” on page 4-6

“Projects” on page 4-6

“Test Plans” on page 4-6

“Responses” on page 4-6

Overview of Model Structure
To use the Model Browser in the Model-Based Calibration Toolbox™ product,
you must understand the structure and functions of the model tree to
navigate the views. To use the command-line version of the toolbox, you must
understand the same structure and functions, that is, how projects, test plans,
and models fit together. The following sections describe the relationship
between the different models that you can construct. The diagrams in the
following section, “How the Model Tree Relates to Command-Line Objects” on
page 4-9, illustrate these relationships.

Projects

• Projects can have one or more test plans.

• Projects can have one or more data objects.

Test Plans

• Test plans have no more than one data object.

• Test plans have response objects.

- If a one-stage test plan, these are simply known as responses.

- If two-stage test plan, these are hierarchical responses.

Responses
A response is a model fitted to some data. These are the types of responses:
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• Hierarchical Response (Level 0)

A hierarchical response (also known as a two-stage response) models a
ResponseSignalName using a local response and one or more response
features.

A hierarchical response has one or more different local responses (accessible
via the property LocalResponses) that provide different possible models
of the ResponseSignalName. One of these must be chosen as the best,
and that will then be the local response used subsequently. The response
features of each of the local responses are available directly from those
local response objects.

• Local Response (Level 1)

The local response consists of models of the ResponseSignalName as a
function of the local input factors. The local input factors are accessible
via the InputSignalNames property.

A local response has one or more response features (accessible via the
property ResponseFeatures) containing the models fitted to those response
features of the local model.

• Response (Level 1 or 2)

- For two-stage test plans, response objects model the response features of
local responses (ResponseSignalName corresponds to the name of the
response feature). In this case, the response has a level value of 2.

- For one-stage test plans, response objects simply model the
ResponseSignalName as a function of the input factors. In this case, the
response will have a level value of 1.

All responses can have zero or more alternative responses (accessible
via the property AlternativeResponses) that provide different possible
models of the ResponseSignalName. These all retain the same level as the
response for which they are an alternative. One of these must be chosen as
the best and that will then be the response used subsequently.

See the illustrations in the following section, “How the Model Tree Relates
to Command-Line Objects” on page 4-9, for examples of different responses
and how they relate to each other.
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Note that each response contains a model object (mbcmodel.model) that can
be extracted and manipulated independently of the project. You can change
the model type and settings, fit to new data, examine coeffficients, regression
matrices and predicted values, and use stepwise functions to include or
remove terms. You can change model type, properties and fit algorithm
settings. See “Handling Models”Model Object. If you change the model, you
must use UpdateResponse to replace the new model type in the response
object in the project. When you use UpdateResponse the new model is fitted
to the response data. See UpdateResponse.
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How the Model Tree Relates to Command-Line Objects
The tree in the Model Browser displays the hierarchical structure of models.
This structure must be understood to use the command-line interface. The
following examples illustrate the relationship between projects, test plans and
responses in one-stage and two-stage models.

The following is an example of a two-stage model tree.
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The elements of the tree correspond to the following objects in the
command-line interface:

1 Project

2 Test Plan

3 Hierarchical Response

4 Local Response

5 Responses

The following example illustrates a project containing a one-stage test plan;
in the command-line interface this corresponds to a project, one-stage test
plan, and a response model.
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Hierarchical responses can have multiple local responses, as shown in the
following example from the Model Browser. In the command-line interface
these are accessible via the property LocalResponses for a hierarchical
response object (mbcmodel.hierarchicalresponse). In this example, the
local responses are PS22, PS32, and POLY2.

Only one of these local responses can be chosen as best (in this example,
PS22, indicated by the blue icon) and used to construct the hierarchical
response, together with the associated response features of the local response.
Each local response object has a set of responses, accessible by the property
ResponseFeatures(Local Response).
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Responses can have zero or more alternative responses, as shown in the
following model tree. You call the method CreateAlternativeModels on the
command line to do the same.
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In this example, the alternative responses for the knot response are accessible
via the property AlternativeResponses. You can create alternative responses
for any response (including all one-stage responses).

You can use model templates to try alternative model types for several
responses. The following example shows the results of using a model
template for four alternative responses (Linear-RBF, RBF-multiquadric,
Cubic, and Quadratic). The model template has been used to create
alternative responses for the responses knot and max. You can call the method
CreateAlternativeModels to do this in the command-line interface.
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One of the alternative responses must be chosen as best for each response
(call the method ChooseAsBest). In this example, when Linear-RBF is chosen
as best from the alternatives for the knot response, then it is copied to knot.
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Command-Line Demos
See Model-Based Calibration Toolbox™ Demos for a selection of command-line
demos.
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Tutorial: Model Quickstart

This section discusses the following topics:

Two-Stage Models (p. 5-2) Overview of the tutorial tasks
including an introduction to
two-stage modeling.

Starting the Toolbox and Loading
Data (p. 5-4)

How to start the toolbox and load
and view some data for modeling.

Setting Up the Model (p. 5-8) How to set up your local and global
models, select data for modeling, and
specify a response to be modeled.

Verifying the Model (p. 5-24) How to examine the model fit to the
data by looking at the local, global,
and two-stage response model in
turn. This demonstrates how to use
the Model Selection feature and
Maximum Likelihood Estimation.

Exporting the Model (p. 5-41) How to export your completed model,
for example, for use in the CAGE
part of the toolbox for calibrating.

Creating Multiple Models to
Compare (p. 5-43)

Useful methods for creating multiple
different models to search for the
best possible fit to the data.
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Two-Stage Models
This tutorial gives you a quick introduction to the modeling end of the
Model-Based Calibration Toolbox™ product. The instructions show you how
to use the toolbox to create a statistical model of an automobile engine that
predicts the torque generated by the engine as a function of spark angle and
other variables. We provide example engine data and show you how to fit a
statistical model to the data, examine and verify the fit, and export the model.
In the normal modeling process, you would create many different models for
one project and compare them to find the best solution. The tutorial also
provides a quick guide to fitting and comparing multiple models.

Following is an explanation of how two-stage models are constructed and how
they differ from one-stage models.

This tutorial is a step-by-step guide to constructing a single two-stage model
for modeling engine brake torque as a function of spark, engine speed, load,
and air/fuel ratio. One-stage modeling fits a model to all the data in one
process, without accounting for the structure of the data. When data has an
obvious hierarchical structure (as here), two-stage modeling is better suited
to the task.

The usual way for collecting brake torque data is to fix engine speed, load,
and air/fuel ratio within each test and sweep the spark angle across a range of
angles. For this experimental setup, there are two sources of variation. The
first source is variation within tests when the spark angle is changed. The
second source of variation is between tests when the engine speed, load, and
air/fuel ratio are changed. The variation within a test is called local, and the
variation between tests, global. Two-stage modeling estimates the local and
global variation separately by fitting local and global models in two stages. A
local model is fitted to each test independently. The results from all the local
models are used to fit global models across all the global variables. Once the
global models have been estimated, they can be used to estimate the local
models’ coefficients for any speed, load, and air/fuel ratio. The relationship
between the local and global models is shown in the following block diagram,
as you will see in the Model Browser.
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Starting the Toolbox and Loading Data
1 Double-click the MATLAB® icon to start MATLAB.

2 To start the Model Browser, enter mbcmodel at the command prompt in
MATLAB.

3 If you have never used the toolbox before, the User Information dialog
appears. If you want, you can fill in any or all of the fields: your name,
company, department, and contact information, or you can click Cancel.
The user information is used to tag comments and actions so that you
can track changes in your files (it does not collect information for The
MathWorks).

Note You can edit your user information at any time by selecting
File > Preferences.

4 When you finish with the User Information dialog, click OK.

The Model Browser window appears.

In this window, the left pane, All Models, shows the hierarchy of the models
currently built in a tree. At the start, only one node, the project, is in the tree.
As you build models, they appear as child nodes of the project. The right
panes change, depending on the tree node selected. You navigate to different
views by selecting different nodes in the model tree. Different tips can appear
in the Tip of the Day pane.
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Load the example data file holliday.xls:

1 Click the button on the toolbar, or select Data > New Data.

This opens the Data Editor window.

2 Click the Import File icon on the toolbar ( ) or select
File > Import > File.

3 Use the browse button to the right of the edit box in the Data Import
Wizard to open a file browser and find the file holliday.xls in the
mbctraining directory. Click Open or double-click the file.

$��
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4 The file pathname appears in the Data Import Wizard. Click Next.

5 A summary screen displays information about the data. Click Finish to
close the Data Import Wizard and return to the Data Editor.

You can view plots of the data in the Data Editor by selecting variables and
tests in the lists on the left side. Have a look through the data to get an
idea of the shape of curve formed by plotting torque against spark.

6 Close the Data Editor to accept the data and return to the Model Browser.
Notice that the new data set appears in the Data Sets pane.
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This data is from Holliday, T., “The Design and Analysis of Engine
Mapping Experiments: A Two-Stage Approach,” Ph.D. thesis, University
of Birmingham, 1995.
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Setting Up the Model

In this section...

“Creating the Test Plan” on page 5-8

“Setting Up the Local Model” on page 5-10

“Setting Up the Global Model” on page 5-14

“Selecting Data” on page 5-18

“Specifying the Response Model” on page 5-22

Creating the Test Plan
Now you can use the data to create a statistical model of an automobile engine
that predicts the torque generated by the engine as a function of spark angle
and other variables.

Note It does not matter in which order you set up local and global models, as
both must be completed before you set up the response model.

1 To create a new test plan, do one of the following:

• In the Test Plans list pane at the bottom, click New.

Alternatively, click the New Test Plan button ( ) in the toolbar. Note
that this button changes depending on which node is selected in the
model tree. It always creates a child node (not necessarily a test plan
node), as does the New button at the bottom.

Or select File > New Test Plan.

The New Test Plan dialog box appears.
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2 Click the two-stage test plan icon and click OK.

The default name of the new test plan, Two-Stage, appears in the Model
Browser tree, in the All Models pane.

The view switches to the new test plan node, and the Model Browser
window displays a diagram representing the two-stage model.
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Setting Up the Local Model
Setting up the local model requires that you specify the model’s inputs and
type.

5-10



Setting Up the Model

(�)'�	�
��
!��	�	
���
����	���
��
"�%	�����)��

(�)'�	�
��
!��	�	
���
����	���
��
"�%	���*�	

Specifying the Local Model Input
The model you are building is intended to predict the torque generated by an
engine as a function of spark angle at a specified operating point defined
by the engine’s speed, air/fuel ratio, and load. The input to the local model
is therefore the spark angle.

To specify spark angle as the input,

1 Double-click (or right-click) the Local Inputs icon on the model diagram to
specify the local model input.

The Local Input Factor Setup dialog box appears.
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a Set Symbol to S.

b Set Signal to spark. This is optional and matches the raw data.

2 Click OK to dismiss the dialog box.

Notice that the new name of the local model input now appears on the
two-stage model diagram.

Specifying the Local Model Type
The type of a local model is the shape of curve used to fit the test data, for
example, quadratic, cubic, or polyspline curves. In this example, you use
polyspline curves to fit the test data. A spline is a curve made up of pieces
of polynomial, joined smoothly together. The points of the joins are called
knots. In this case, there is only one knot. These polynomial spline curves
are very useful for torque/spark models, where different curvature is required
above and below the maximum.

To specify polyspline as the model type,

1 Double-click the local model icon in the model diagram.

The Local Model Setup dialog box appears.
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a Select Polynomial Spline from the Local Model Class list.

b Set Spline Order to 2 below and 2 above knot.

2 Click OK to dismiss the dialog box.

Notice that the new name of the local model class, PS (for polyspline) 2,2
(for spline order above and below knot) now appears on the two-stage model
diagram.
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Setting Up the Global Model
Setting up the global model is similar to setting up the local model. You must
specify the model (or curve) type and the inputs used to create the model.
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Specifying the Global Model Inputs
The inputs to the global model are the variables that determine the operating
point of the system being modeled. In this example, the operating point of the
engine is determined by the engine’s speed in revolutions per minute (rpm
- often called N), load (L), and air/fuel ratio (afr).

To specify these inputs,

1 Double-click the Global Inputs icon on the model diagram.

The Global Input Factor Setup dialog box appears.

5-15



5 Tutorial: Model Quickstart

By default, there is one input to the global model. Because this engine
model has three input factors, you need to increase the input factors as
follows:

a Click the up arrow button indicated by the cursor above to increase the
number of factors to three.

b Edit the three factors to create the engine model input. In each case,
change the symbols and signals to the following:

Symbol Signal

N n

L load

A afr

c Leave the Min and Max boxes at the defaults (you fill them during the
data selection process). You might want to set factor ranges at this stage
if you were designing an experiment, but in this case there is already
data available, so you use the actual range of the data to model instead.

2 Click OK to dismiss the dialog box.
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Specifying the Global Model Type
Fitting the local model finds values for each model coefficient or response
feature (for example, knot) for each test. These coefficients then become the
data to which you fit the global model.

By default, quadratic polynomials are used to build the global model for each
response feature. In this case you use the default.

To specify quadratic curves as the global model curve fitting method,

1 Double-click the icon representing the global model in the two-stage model
diagram.

The Global Model Setup dialog box appears.

a Polynomial should already be selected from the Linear Model
Subclass pop-up menu. Under Model options, the order for the three
variables N, L, and A is set by default to 2, which is required.
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b Set Stepwise to Minimize PRESS (PREdicted Sum Square error).

2 Click OK to accept the settings and dismiss the Model Settings dialog box.

You use the Stepwise feature to avoid overfitting the data; that is, you do
not want to use unnecessarily complex models that “chase points” in an
attempt to model random effects. Predicted error sum of squares (PRESS) is a
measure of the predictive quality of a model. Minimize PRESS throws away
terms in the model to improve its predictive quality, removing those terms
that reduce the PRESS of the model.

This completes the setup of the global model.

Selecting Data
The model you have set up now needs data:

1 Double-click the Responses block in the Test Plan diagram. As no data has
yet been selected for this test plan, this launches the Data Wizard.
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For the same result, you could also click the Select Data button in the
toolbar of the Model Browser (or TestPlan > Select Data menu item).
Also, if you did not already load a data set at the project node, you can do it
at this point using TestPlan > Load New Data.

The Data Wizard dialog box appears.
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2 Data Object is already selected by default. Click Next.

3 Select S in the Model Input Factors box and Spark under All Data
Signals.

If the signal name entered during the input factor setup matches a signal
name in the data set, the wizard automatically selects the correct signal
when the input factor is selected. If the name is not correct, you must select
the correct signal manually by clicking. This autoselect facility can save
time if the data set has a large number of signals.

4 Select the Copy Range check box, as shown in the following figure. This
selection tells the model to use the range in the data for that factor.
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5 Click the large Select Data Signal button, as indicated above.

6 Repeat this process to match the correct data signals to the other three
input factors, N, L, and A (from n, load, and afr).

7 When you have matched all four input factors to the correct data signals
(for both stages of the two-stage model), click Next.
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Specifying the Response Model
The model you just set up now needs a response specified (that is, the factor
you want the model to predict, in this case, torque).

The next screen of the Data Wizard is for selecting response models.

1 Select tq (torque) as the response.

2 Click Add. Torque appears in the Responses list.

3 Select Maximum under Datum.

Only certain model types with a clearly defined maximum or minimum can
support datum models. See “New Response Models and Datum Models”.

4 Clear the check box Open Data Editor on completion. You have already
inspected the data.

5 Click Finish.
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The Model Browser now calculates local and global models using the test
plan models you just set up.

Notice that torque appears on the two-stage model diagram, and a new node
appears on the tree in the All Models pane, called PS22.
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Verifying the Model

In this section...

“Verifying the Local Model” on page 5-24

“Verifying the Global Model” on page 5-26

“Selecting the Two-Stage Model” on page 5-28

“Comparing the Local Model and the Two-Stage Model” on page 5-35

“Maximum Likelihood Estimation” on page 5-36

“Response Node” on page 5-39

Verifying the Local Model
The first step is to check that the local models agree well with the data:

1 Select PS22 (the local node) on the Model Browser tree.
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The Local Model pane appears, displaying the local model fitting the
torque/spark data for the first test and diagnostic statistics that describe
the fit. The display is flexible in that you can drag, open, and close the
divider bars separating the regions of the screen to adjust the view.
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The lower plot shows the data being fitted by the model (blue dots) and the
model itself (line). The red spot shows the position of the polyspline knot,
at the datum (maximum) point.

2 In the upper scatter plot pane, click the Y-axis factor pop-up menu and
select Studentized residuals.

3 To display plots and statistics for the other test data, scroll through the tests
using the Test arrows at the top left, or by using the Select Test button.
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4 Select Test 588. You see a data point outlined in red. This point has
automatically been flagged as an outlier.

5 Right-click the scatter plot and select Remove Outliers. Observe that the
model is refitted without the outlier.

Both plots have right-click pop-up menus offering various options such as
removing and restoring outliers and confidence intervals. Clicking any data
point marks it in red as an outlier.

You can use the Test Notes pane to record information on particular tests.
Each test has its own notes pane. The test numbers of data points with notes
recorded against them are colored in the global model plots, and you can
choose the color using the Test Number Color button in the Test Notes
pane. You can quickly locate tests with notes by clicking Select Test.

Verifying the Global Model
The next step is to check through the global models to see how well they
fit the data:

1 Expand the PS22 local node on the Model Browser tree by clicking the plus
sign (+) to the left of the icon. Under this node are four response features
of the local model. Each of these is a feature of the local model of the
response, which is torque.

2 Select the first of the global models, knot.

The Response Feature pane appears, showing the fit of the global model
to the data for knot. Fitting the local model is the process of finding values
for these coefficients or response features. The local models produce a value
of knot for each test. These values are the data for the global model for
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knot. The data for each response feature come from the fit of the local
model to each test.

3 Select the response feature Bhigh_2. One outlier is marked. Points with
an absolute studentized residual value of more than 3 are automatically
suggested as outliers (but included in the model unless you take action).
You can use the right-click menu to remove suggested outliers (or any
others you select) in the same way as from the Local Model plots. Leave
this one. If you zoom in on the plot (Shift-click-drag or middle-click-drag)
you can see the value of the studentized residual of this point more clearly.
Double-click to return to the previous view.
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Note Never remove outliers as a matter of course. However, this tutorial is
designed to show you how the toolbox helps you to do this when required.
The default outlier selection criterion is a studentized residual greater
than 3, to bring your attention to possible outliers, but you should never
remove data without good reasons. Remove enough points and the model
will simply interpolate the data and become useless for prediction. You
can customize the criteria for outlier selection. Use the plot of Cook’s
Distance to see the influence of each point on the model fit to help you
decide whether to remove an outlier.

4 Select the other response features in turn: max and Blow 2. You will see
that Blow 2 has a suggested outlier with a very large studentized residual;
it is a good distance away from all the other data points for this response
feature. All the other points are so clustered that removing this one could
greatly improve the fit of the model to the remaining points, so remove it.

Return to the Local Model pane by clicking the local node PS22 in the Model
Browser tree.

Selecting the Two-Stage Model
Recall how two-stage models are constructed: two-stage modeling partitions
the variation separately between tests and within tests, by fitting local and
global models separately. A model is fitted to each test independently (local
models). These local models are used to generate global models that are fitted
across all tests.

For each sweep (test) of spark against torque, you fit a local model. The local
model in this case is a spline curve, which has the fitted response features of
knot, max, Bhigh_2, and Blow_2. The result of fitting a local model is a value
for knot (and the other coefficients) for each test. The global model for knot is
fitted to these values (that is, the knot global model fits knot as a function of
the global variables). The values of knot from the global model (along with the
other global models) are then used to construct the two-stage model

The global models are used to reconstruct a model for the local response (in
this case, torque) that spans all input factors. This is the two-stage model
across the whole global space, derived from the global models.
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Now you can use the model selection features to view the fit of this two-stage
model in various ways, to compare it with both the data and the local model fit.

Within this tutorial, you use the following:

• “Tests View” on page 5-32

• “Response Surface View” on page 5-33

Note To construct a two-stage model from the local and global models, you
click the local node in the model tree (with the house icon) and click the
Select button. This is the next step in the tutorial.

Once you are satisfied with the fit of the local and global models, it is time to
construct a two-stage model from them. Return to the Local Model view by
clicking the local node PS22 in the Model Browser tree. The Model Browser
should look like the following example.
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Verifying the Model

Click Select in the Response Features list pane, and the Model Selection
window appears. This window is intended to help you select a best model by
comparing several candidate models. A number of icons in the toolbar enable
you to view the fit of the model in various ways. By default, the Tests view
appears. These plots show how well the two-stage model agrees with the data.
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Tests View

Scroll though the tests using the left/right arrows or the Select Test button
at the top left. The plots show the fit of the two-stage model for each test
(green open circles and line), compared with the fit of the local model (black
line) and the data (blue dots). You can left-click (and hold) to see information
on each test or zoom in on points of interest by Shift-click-dragging or
middle-click-dragging. Double-click to return the plot to the original size.
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Response Surface View

You view the model as a surface by clicking the Response Surface icon
in the toolbar. You can rotate the plot by click-dragging it.

1 Click Movie in the Display Type list to see the surface (torque against
spark and speed) vary through different values of load. Click Replay
to see it again.

2 Take a look at some of the other display types.
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3 Dismiss the Model Selection window, and accept the best model by clicking
Yes in the Model Selection dialog (it is the only two-stage model so far).

4 The MLE dialog appears, prompting you to calculate the maximum
likelihood estimate (MLE) for the two-stage model. Click Cancel. You can
calculate MLE later.
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Comparing the Local Model and the Two-Stage Model
Now the lower plots in the Local Model pane show two lines fitted to the test
data: the Local Model line (black), and the Two-Stage Model line (green). The
plots also show the data (in blue), so you can compare how close the two-stage
model fit is to both the data and the local fit for each test.

You can scroll through the various tests (using the arrows at the top left
or the Select Test button) to compare the local and two-stage models for
different tests.

Notice that the local model icon has changed (from the local icon showing

a house, to a two-stage icon showing a house and a globe) to indicate that
a two-stage model has been calcluated.

Click the button in the toolbar to calculate the maximum likelihood
estimate.

5-35



5 Tutorial: Model Quickstart

Maximum Likelihood Estimation
The global models were created in isolation without accounting for any
correlations between the response features. Using MLE (maximum likelihood
estimation) to fit the two-stage model takes account of possible correlations
between response features. In cases where such correlations occur, using
MLE significantly improves the two-stage model.

1 You reach the MLE dialog from the local node (PS22 in this case) by

• Clicking the button in the toolbar

• Or by choosing Model > Calculate MLE

2 Leave the algorithm default settings and click Start to calculate MLE.

3 Watch the progress indicators until the process finishes and a two-stage
RMSE (root mean square error) value appears.

4 Click OK to leave the MLE dialog.

Now the plots on the Local Model pane all show the two-stage model in
purple to indicate that it is an MLE model. This is also indicated in the
legend. Notice that all the model icons in the tree (the response, the local
model, and the response features) have also changed to purple to indicate
that they are MLE models.
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5 Click the Select button. This takes you to the Model Selection window.

Here you can compare MLE with the univariate model previously
constructed (without correlations). By default, the local fit is plotted
against the MLE model.

6 Select both MLE and the Univariate model for plotting by holding down
Shift while you click the Univariate model in the Model List at the bottom
of the view.
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7 Close the Model Selection window. Click Yes to accept the MLE model
as the best.
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Response Node
Click the Response node (tq) in the Model Browser tree.

�	�����	���%	

Now at the Response node in the Model Browser tree (tq), which was
previously blank, you see this:
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This shows you the fit of the two-stage model to the data. You can scroll
through the tests, using the arrows at top left, to view the two-stage MLE
model (in green) against the data (in blue) for each test.

You have now completed setting up and verifying a two-stage model.
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Exporting the Model
All models created in the Model Browser are exported using the File menu. A
model can be exported to the MATLAB® workspace, to a file, or to a Simulink®

model.

1 Click the tq node in the model tree.

2 Choose File > Export Models. The Export Model dialog box appears.

3 Choose File from the Export to pop-up menu. This saves the work as
a file for use within the Model-Based Calibration Toolbox™ product, for
instance, to create calibrations in the CAGE Browser.

4 In the Export Options frame, select the destination of the file. You can do
this by typing directly in the edit box, or using the Browse button if you
want to locate a directory or use an existing file.

5 Ensure that Export datum models is selected, as this allows the datum
global model to be exported. The datum model in this case is MBT (the
spark angle at maximum brake torque).
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6 Click OK to export the models.
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Creating Multiple Models to Compare

In this section...

“Methods For Creating More Models” on page 5-43

“Creating New Local Models” on page 5-43

“Adding New Response Features” on page 5-47

“Comparing Models” on page 5-48

“Creating New Global Models” on page 5-50

“Creating Multiple Models Using Build Models” on page 5-53

Methods For Creating More Models
Once you have fitted and examined a single model, you will normally want to
create more models to search for the best fit. You can create individual new
models, use the Build Models function to create a selection of models at once,
or create a template to save a variety of model settings for reuse.

You can create new child nodes by clicking the New button from any modeling
node. The Model Setup dialog appears where you can change the type and
settings, and when you close the dialog the view switches to the new child
node on the tree. You can do this for multiple child nodes to create a selection
of different model types fitted to the same data. You can also use the Build
Models dialog to quickly create a selection of different child nodes to compare.
The following exercises show you examples of these processes. Note that you
need to complete the previous tutorial sections to have a complete two-stage
model as a starting point.

Creating New Local Models

1 As an example, select the tq response node and click New in the Local
Models list pane.

The Local Model Setup dialog appears.

2 Select a Polynomial Spline with a spline order of 3 below the knot and 2
above. Click OK.
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A new set of local models (and associated response feature models) is
calculated.

3 Return to the parent tq response node , and click New again, in the Local
Models list pane.

4 Select a Polynomial with an order of 2 in the Local Model Setup dialog.
Click OK.

A new set of local models and response feature models is calculated.
Now you have three alternative local models to compare: two polynomial
splines (order 3,2 and order 2,2) and a polynomial (order 2), as shown.

You can select the alternative local models in turn and compare their
statistics. For an example, follow these steps:

1 Select the new local model node PS32.

2 Select test 587 in the Test edit box.

3 In the Diagnostic statistics pane, select Local diagnostics from the
drop-down menu. Observe the value of s_i in this pane. This is the value
of RMSE (root mean squared error) for the current (ith) test.

5-44



Creating Multiple Models to Compare

The RMSE value is our basic measure of how closely a model fits some data,
which measures the average mismatch between each data point and the
model. This is why you should look at the RMSE values as your first tool to
inspect the quality of the fit — high RMSE values can indicate problems.

4 Now select the local model node POLY2 and see how the value of s_i
changes.

Observe that the shape of the torque/spark sweep for this test is better
suited to a polynomial spline model than a polynomial model. The curve is
not symmetrical because curvature differs above and below the maximum
(marked by the red cross at the datum). This explains why the value
of s_i is much lower for PS32 (the polynomial spline) than for the POLY2
(polynomial) for this test. The polynomial spline is a better fit for the
current test.

5 Look through some other tests and compare the values of s_i for the
different local models. To choose the most suitable local model you must
decide which fits the majority of tests better, as there are likely to be
differences among best fit for different tests.

6 To help you quickly identify which local models have the highest RMSE,

indicating problems with the model fit, click RMSE Plots ( ) in the
toolbar (or select View > RMSE Plots) to open the RMSE Explorer dialog.
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a Right-click to toggle the test number display to help you identify problem
tests.

b Use the drop-down menus to change the display. For example, select
s_knot to investigate the error values for knot (MBT), or s_e to look
at overall error.

7 Look at the value of Local RMSE reported in the Pooled Statistics pane on
the right (this is pooled between all tests). Now switch between the POLY2
and the PS32 local models again and observe how this value changes.

8 You can compare these values directly by selecting the parent tq response
node, when the Local RMSE is reported for each child local model in the
list at the bottom.

When all child models have a two-stage model calculated, you can also
compare two-stage values of RMSE here. Remember, you can always see
statistics for the list of child models of the currently selected node in this
bottom list pane.

When comparing models, look for lower RMSE values to indicate better fits.
However, remember that a model that interpolates between all the points
can have an RMSE of zero but be useless for predicting between points.
Always use the graphical displays to visually examine model fits and beware
of “overfitting” — chasing points at the expense of prediction quality. You
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will return to the problem of overfitting in a later section when you have
two-stage models to compare.

Adding New Response Features
Recall that two-stage models are made up of local models and global models.
The global models are fitted to the response features of the local models. The
response features available are specific to the type of local model. You can add
different response features to see which combination of response features
makes the best two-stage model as follows:

1 Select the local model node PS32.

2 Click the New button under the list of response features.

A dialog appears with a list of available response features.

3 Select f(x+datum) from the list and enter -10 in the Value edit box. Click
OK.

A new response feature called FX_less10 is added under the PS32 local
model. Recall that the datum marks the maximum, in this case maximum
torque. The spark angle at maximum torque is referred to as maximum
brake torque (MBT). You have defined this response feature (f(x+datum))
to measure the value of the model (torque) at (-10 + MBT) for each test.
It can be useful to use a response feature like this to track a value such
as maximum brake torque (MBT) minus 10 degrees of spark angle. This
response feature is not an abstract property of a curve, so engineering
knowledge can then be applied to increase confidence in the models.

4 Select the local node PS32, and click Select. Notice that there are four
possible two-stage models this time. This is because you added a sixth
response feature. Only five (which must include knot) are required for
the two-stage model, so you can see the combinations available and
compare them. Note that not all combinations of five response features can
completely describe the shape of the curve for the two-stage model, so only
the possible alternatives are shown.

5 Close the Model Selection window and click OK to accept one of the models
as best. Click Cancel to avoid calculating MLE.
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Notice that the four response features chosen to calculate the two-stage
model are highlighted in blue, and the unused response feature is not
highlighted, as shown.

6 Select the tq response node to see a comparison of the statistics of both
two-stage models (your original PS22 and the new PS32).

Remember that the POLY2 local model has no two-stage model yet; no
two-stage statistics are reported for POLY2 in the bottom list pane. You
also cannot use the Model Selection window to fully compare the two-stage
models until every local model in the test plan has a two-stage model
calculated.

7 To calculate the two-stage model for POLY2, click Select at the POLY2 node.
Either double-click to assign a model as best or close the Model Selection
window and click OK to accept the best model. Click Cancel to avoid
calculating MLE, then the two-stage model is calculated.

Comparing Models

1 Now you have three two-stage models. Select the tq response node and look
at the statistics, particularly Local RMSE, Two-Stage RMSE, and PRESS
RMSE, reported in the list of child models at the bottom.

• Look for lower RMSE values to indicate better fits.
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• Look for lower PRESS RMSE values to indicate better fits without
overfitting. PRESS RMSE is a measure of the predictive power of your
models.

It is useful to compare PRESS RMSE with RMSE as this may indicate
problems with overfitting. RMSE is minimized when the model gets
close to each data point; “chasing” the data will therefore improve RMSE.
However, chasing the data can sometimes lead to strong oscillations in
the model between the data points; this behavior can give good values
of RMSE but is not representative of the data and will not give reliable
prediction values where you do not already have data. The PRESS
RMSE statistic guards against this by testing how well the current
model would predict each of the points in the data set (in turn) if they
were not included in the regression. To get a small PRESS RMSE usually
indicates that the model is not overly sensitive to any single data point.

If the value of PRESS RMSE is much bigger than the RMSE, then
you are overfitting - the model is unnecessarily complex. For a fuller
description of the meaning of overfitting, and how RMSE and PRESS
can help you select good models, see “Model Selection Guide”. As a rule
of thumb, if you have about 100 data points, you should aim for a PRESS
RMSE no more than 5% larger than the RMSE (remember here you
have only 27 tests).

Notice that your first two-stage model (PS22) does not have a PRESS
RMSE value. This is because it cannot be displayed for MLE models. You
need non-MLE models to be able to use PRESS for direct comparison.

• Look for lower T^2 values. A large T^2 value indicates that there is a
problem with the response feature models.

• Look for large negative log likelihood values to indicate better fits.

See “Pooled Statistics” for more on T^2 and log likelihood.

2 Now click Select to open Model Selection to compare all three two-stage
models simultaneously. Here you can see the same statistics to compare
the models in the bottom list, but you can also make use of a variety of
views to look for the best fit:

• You can plot the models simultaneously on the Tests, Residuals and
Cross Section views (Shift- or Ctrl-click to select models in the list)
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• You can view each model in the Response Surface view as a surface;
movie, contour or multiline plot, and as a table

3 You can select a model and click Assign Best in the Model Selection
window, or double-click a model to assign it as best.

4 When you close the Model Selection window and return to the Model
Browser, the model you selected as best is copied to the parent response
node, tq.

Creating New Global Models
In this example, you have not yet searched for the best global model types.
You would normally do this before creating and comparing two-stage models.
For the purpose of this tutorial, you have already created two-stage models
and used the Model Selection tool to introduce the use of RMSE and PRESS
to help you identify better models. The principle is the same at each level in
the model tree: add new child models and use the Model Selection window to
choose the best.

1 Select one of the response feature nodes under the PS32 node, such as knot.

2 Click New. Click OK in the Model Setup dialog without changing any
settings, to create a copy of the parent model. Return to the parent model
and repeat.

Two new global model child nodes now appear underneath knot, as shown.
Both are labeled Quadratic, as they are currently copies of the parent
model. You can create any number of child nodes to search for the best
global model fit for each response feature in your tree. When you choose
the best, it is copied to the parent node, in this case knot, including any
outliers you decide to exclude.

A good technique for creating multiple models can be to leave the first
child node unchanged, then you always have a copy of the original model
for comparison.
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3 Select one of the new Quadratic nodes, then select the menu item
Model > Set Up.

The Global Model Setup dialog appears. Here you can change the type and
settings of the model to see if you can find a better fit to the data with a
different model type.

4 Use the drop-down menu to change the Model class to Hybrid RBF and
click OK.

The new model fit is calculated, and the Quadratic node’s name changes
to Linear-RBF.

5 Select the remaining Quadratic node, then select Model > Set Up.

6 Use the drop-down menu to change the Model class to Radial Basis
Function, and click OK. There are many other settings you can alter for
both these model types, but for a quick exploration of the trends in the data
it is worth trying the default model settings.

The new model fit is calculated and the Quadratic node’s name changes to
RBF-multiquadric.
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7 To compare the two child node models, select the parent node knot and
click Select. Whichever model you assign as best is copied to the knot node
when you close the Model Selection window and click OK.

Notice that the child node model assigned as best is highlighted in blue,
and the local node has changed from the two-stage icon back to the local
model icon (a red house) as shown. This is because you have changed one of
the response feature models, and so you need to recalculate the two-stage
model using the new global model for this response feature. First you need
to select best global models for every response feature.

8 Add two more child nodes to the knot global model (select knot, then click
New, and repeat).

Notice that now the new nodes are copies of Linear-RBF, because that model
was selected as best.

9 Select the two new nodes in turn and change their model types. Try a cubic
and quadratic polynomial model type.

a Select the menu item Model > Set Up.

b Choose Linear model from the Model class drop-down menu and set
the polynomial order for each factor to 3 for one model, then 2 for the
other. Click OK.

10 To compare all four child node models, select the parent node knot and click
Select. Linear-RBF still performs the best for PRESS RMSE. Whichever
model you assign as best is copied to the knot node.
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11 Select the knot model node, then select Model > Make Template. Browse
to a suitable work directory and enter the name Mytemplate. Click OK.

Creating Multiple Models Using Build Models
The quickest way to create multiple different models to compare is to use
the Build Models function. You can use this to select a template and build a
selection of models as child nodes of the current node. The best model of this
selection of child nodes is automatically selected (it will have a blue icon),
based on the selection criteria you choose (such as PRESS RMSE, RMSE,
Box-Cox, and so on).

1 Before calculating MLE, select a global model such as max.

You cannot reach the Build Models dialog from an MLE global model. Note
that calculating MLE is not irreversible — to go back you can always go
to Model Selection (from the local node) and select the Univariate model
as best.

2 Click Build Models in the toolbar.
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The Build Models dialog appears. Here you can choose a template for
the type of models you want to build. There are predefined templates
for polynomials, RBFs, hybrid RBFs, free knot splines (for single input
models), or you can select a suitable parent node in the current project
to use as a template.

You can also create templates of whatever models you choose by
selecting the New template in the Build Models dialog box, or using the
Model > Make Template menu item at a model node, as you did in
the previous section. Your user-defined templates can then be found via
the Build Models dialog. You can use the Browse button to find stored
templates that are not in the default directory.

3 Click Browse and select the directory containing the template you created
earlier, named Mytemplate. Click OK.

Your new template (called Mytemplate) now appears in the Build Models
dialog along with the defaults. Note that you can set the default directory
where the toolbox looks for templates (and models, data, and projects)
using File > Preferences.

4 Select Mytemplate. Notice the four model types you saved in this template
appear in the Information pane. Click OK.
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The Model Selection dialog appears, where you can choose a criterion for
automatically selecting the best model out of the child nodes.

5 Use the drop-down menu to choose PRESS RMSE as the selection criteria
for the best model, and click OK.

Four child nodes appear: Linear-RBF, RBF-multiquadric, Cubic, and
Quadratic. These are the model types you selected when you built the
template and are now fitted to the data for max.

The most favorable child node model, based on PRESS RMSE, is selected as
best (highlighted in blue) as shown in the following figure. This model is
also copied to the parent node max, in the same way as if you had used the
Model Selection window to assign a best model.

Try one of the default templates in the Build Models dialog box as follows:

1 Select another global model such as Blow_2.

2 Click Build Models in the toolbar.

3 Select RBF and click OK. Click Build in the following Model Building
Options dialog to build a selection of child nodes.

Similarly, you can use the Build Models dialog to automatically build a
selection of polynomial or hybrid RBF models, or your own selection of
model types, to search for the best fit.
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4 Click OK in the Model Selection dialog to accept the default, PRESS RMSE,
as the selection criteria for the best model.

5 Look at the statistics in the lower list pane to quickly compare all the
different RBF kernel child models. If one model performs significantly
better in terms of PRESS RMSE and RMSE you might choose not to click
Select to compare all the child node models. However, it is usually useful
to visually inspect the models to see how they compare.

6 When you have chosen a best model, it can be useful to select some (or all) of
the rejected models in the bottom list pane and press Delete. You can also
select File > Clean Up Tree. This deletes all rejected child models where
best models have been chosen; only the child nodes selected as best remain.

Creating a template containing a list of all the models you want is a very
efficient way to quickly build a selection of alternative model child nodes for
many global models. Use these techniques to find models well suited to the
data for each of your global models.

When you have chosen best global models for all your response features, you
need to recalculate the two-stage model. Click Select at the local model
(PS32) node to calculate the two-stage model.
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Tutorial: Design of
Experiment

This section discusses the following topics:

What Is Design of Experiment?
(p. 6-3)

Introducing design of experiment
and the design styles you can
construct using the Design Editor.

Getting Started with the Design
Editor (p. 6-7)

How to get started by setting up a
project session, opening the Design
Editor, and creating a new design.

Creating Optimal Designs (p. 6-11) The first of three design types you
create is an optimal design.

Viewing Design Displays (p. 6-18) How to use the Design Editor
displays to explore your designs.

Using the Prediction Error Variance
Viewer (p. 6-22)

How to use the Prediction Error
Variance Viewer to explore the
predictive power of your designs.

Creating Classical Designs (p. 6-28) How to create a classical design and
compare it with the previous design.

Using the Design Evaluation Tool
(p. 6-35)

How to use the Design Evaluation
Tool to find information about your
designs.

Creating Space-Filling Designs
(p. 6-38)

How to construct a space-filling
design and compare it with the
previous designs.
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Applying Constraints (p. 6-40) How to apply a constraint to your
designs.

Saving Designs (p. 6-46) How to save your designs.
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What Is Design of Experiment?

In this section...

“Why Use Design of Experiment?” on page 6-3

“Design Styles” on page 6-4

“Structure of This Design Editor Tutorial” on page 6-5

Why Use Design of Experiment?
With today’s ever-increasing complexity of models, design of experiment has
become an essential part of the modeling process. The Design Editor within
the Model-Based Calibration Toolbox™ product is crucial for the efficient
collection of engine data. Dyno-cell time is expensive, and the savings in
time and money can be considerable when a careful experimental design
takes only the most useful data. Dramatically reducing test time is growing
more and more important as the number of controllable variables in more
complex engines is growing. With increasing engine complexity, the test time
increases exponentially.

The traditional method of collecting large quantities of data by holding each
factor constant in turn until all possibilities have been tested is an approach
that quickly becomes impossible as the number of factors increases. A full
factorial design (that is, testing for torque at every combination of speed, load,
air/fuel ratio, and exhaust gas recirculation on a direct injection gasoline
engine with stratified combustion capability) is not feasible for newer engines.
Simple calculation estimates that, for recently developed engines, to calibrate
in the traditional way would take 99 years!

With a five-factor experiment including a multiknot spline dimension and 20
levels in each factor, the number of points in a full factorial design quickly
becomes thousands, making the experiment prohibitively expensive to run.
The Design Editor solves this problem by choosing a set of experimental
points that allow estimation of the model with the maximum confidence
using just a fraction of the number of experimental runs; for the preceding
example just 100 optimally chosen runs is more than enough to fit the model.
Obviously, this approach can be advantageous for any complex experimental
design, not just engine research.
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The Design Editor offers a systematic, rigorous approach to the data collection
stage. When you plan a sequence of tests to be run on an example engine,
you can base your design on engineering expertise and existing physical and
analytical models. During testing, you can compare your design with the
latest data and optimize the remaining tests to get maximum benefit.

The Design Editor provides prebuilt standard designs to allow a user with
a minimal knowledge of the subject to quickly create experiments. You can
apply engineering knowledge to define variable ranges and apply constraints
to exclude impractical points. You can increase modeling sophistication by
altering optimality criteria, forcing or removing specific design points, and
optimally augmenting existing designs with additional points.

Design Styles
The Design Editor provides the interface for building experimental designs.
You can make three different styles of design: classical, space-filling, and
optimal.

Optimal designs are best for cases with high system knowledge, where
previous studies have given confidence on the best type of model to be fitted,
and the constraints of the system are well understood. See “Creating Optimal
Designs” on page 6-11.

Space-filling designs are better when there is low system knowledge. In
cases where you are not sure what type of model is appropriate, and the
constraints are uncertain, space-filling designs collect data in such as a way
as to maximize coverage of the factors’ ranges as quickly as possible. See
“Creating Space-Filling Designs” on page 6-38.

Classical designs (including full factorial) are very well researched and are
suitable for simple regions (hypercube or sphere). Engines have complex
constraints and models (high-order polynomials and splines). See “Creating
Classical Designs” on page 6-28.

You can augment any design by optimally adding points. Working in this way
allows new experiments to enhance the original, rather than simply being a
second attempt to gain the necessary knowledge.
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Structure of This Design Editor Tutorial
The following sections guide you through constructing optimal, classical,
and space-filling designs; how to compare designs using the prediction
error variance (PEV) viewer and Design Evaluation tool; and how to apply
constraints to designs.

1 To start the tutorial, you pick a model to design an experiment for, enter
the Design Editor, and construct an optimal design. Once you create a
design, you can use the displays and tools to examine the properties of the
design, save the design, and make changes.

See

• “Getting Started with the Design Editor” on page 6-7

• “Creating Optimal Designs” on page 6-11

• “Viewing Design Displays” on page 6-18

• “Using the Prediction Error Variance Viewer” on page 6-22

• “Saving Designs” on page 6-46

• “Improving the Design” on page 6-25

2 Next you create a classical design, and use the PEV viewer to compare it
with the previous design. You can also use the Design Evaluation tool to
view all details of any design; it is introduced in this example.

See

• “Creating Classical Designs” on page 6-28

• “Using the Design Evaluation Tool” on page 6-35

3 Lastly you construct a space-filling design and compare it with the
others using the PEV viewer. Then you construct and apply two different
constraints to this design and view the results. Normally you would design
constraints before constructing a design, but for the purposes of this tutorial
you make constraints last so you can view the effects on your design.

See

• “Creating Space-Filling Designs” on page 6-38
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• “Applying Constraints” on page 6-40
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Getting Started with the Design Editor

In this section...

“Setting Up a Model” on page 6-7

“Starting the Design Editor” on page 6-8

“Creating a New Design” on page 6-9

Setting Up a Model
You must first have a model for which to design an experiment.

1 From the Model Browser at startup, click the button in the toolbar, or
click New in the Test Plans pane, or choose File > New Test Plan.

2 Select Two-Stage Model and click OK.

3 Click the new Two-Stage node that appears in the model tree (in the All
Models pane), or double-click Two Stage in the Test Plans list at the
bottom. The Two-Stage Model diagram appears.

If you already have a project open, you can select any existing model within
the test plans in the Model Browser tree. For the purposes of this tutorial,
you design experiments for the default Two-Stage global model, which is
a quadratic.

There is only one input to the global model by default. To increase the number
of input factors:

1 Double-click the Global Model Inputs block in the diagram. The Input
Factors Setup dialog appears.

2 Increase the number of factors to three by clicking the Number of Factors
up/down buttons or entering 3 in the edit box.

3 Change the symbols of the three input factors to N, L, and A. This matches
the global factors modeled in the Quick Start tutorial: speed (n), load (L),
and air/fuel ratio (A).
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4 Click OK to leave the Input Factor Setup dialog.

Starting the Design Editor
To access the Design Editor, use either of the following methods:

• Right-click the global model in the diagram and choose Design
Experiment, as shown.

• You can also access the Design Editor by selecting the menu item
TestPlan > Design Experiment.
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The Design Editor window appears.

Creating a New Design

1 Click the button in the toolbar or select File > New. A new node called
Linear Model Design appears.
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2 The new Linear Model Design node is automatically selected. An empty
Design Table appears (see above) because you have not yet chosen a design.
For this example you create an optimal design for the default global model,
which is a quadratic.

You can change the model for which you are designing an experiment from
within the Design Editor window by selecting Edit > Model.

3 Rename the new node Optimal (you can edit the names by clicking again
on a node when it is already selected, or by pressing F2, as when selecting
to rename in Windows Explorer).
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Creating Optimal Designs

In this section...

“Introducing Optimal Designs” on page 6-11

“Start Point Tab” on page 6-12

“Candidate Set Tab” on page 6-13

“Algorithm Tab” on page 6-16

Introducing Optimal Designs

Choose an optimal design by clicking the button in the toolbar, or choose
Design > Optimal.

Optimal designs are best for cases with high system knowledge, where
previous studies have given confidence on the best type of model to be fitted,
and the constraints of the system are well understood.

The optimal designs in the Design Editor are formed using the following
process:

• An initial starting design is chosen at random from a set of defined
candidate points.

• m additional points are added to the design, either optimally or at random.
These points are chosen from the candidate set.
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• m points are deleted from the design, either optimally or at random.

• If the resulting design is better than the original, it is kept.

This process is repeated until either (a) the maximum number of iterations
is exceeded or (b) a certain number of iterations has occurred without an
appreciable change in the optimality value for the design.

The Optimal Design dialog consists of several tabs that contain the settings
for three main aspects of the design:

• Starting point and number of points in the design

• Candidate set of points from which the design points are chosen

• Options for the algorithm that is used to generate the points

Start Point Tab
The Start Point tab allows you to define the composition of the initial design:
how many points to keep from the current design and how many extra to
choose from the candidate set.

1 Leave the optimality criteria at the default to create a V-Optimal design.

2 Increase the total number of points to 30 by clicking the Optional
additional points up/down buttons or by typing directly into the edit box.
You can edit the additional points and/or the total number of points.
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Candidate Set Tab
The Candidate Set tab allows you to set up a candidate set of potential test
points. This typically ranges from a few hundred points to several hundred
thousand.

1 Choose Grid for this example. Note that you could choose different schemes
for different factors.

2 This tab also has buttons for creating plots of the candidate sets. Try them
to preview the grid.
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3 Notice that you can see 1-D, 2-D, 3-D, and 4-D displays (the fourth factor is
color, but this example only uses three factors) at the same time as they
appear in separate windows (see example following). Look at a display
window while changing the number of levels for the different factors. See
the effects of changing the number of levels on different factors, then return
them all to the default of 21 levels.
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Algorithm Tab

1 Leave the algorithm settings at the defaults and click OK to start
optimizing the design.

When you click the OK button on the Optimal Design dialog, the
Optimizing Design dialog appears, containing a graph. This dialog shows
the progress of the optimization and has two buttons: Accept and Cancel.
Accept stops the optimization early and takes the current design from it.
Cancel stops the optimization and reverts to the original design.
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2 Click Accept when iterations are not producing noticeable improvements;
that is, the graph becomes very flat.
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Viewing Design Displays
When you press the Accept button, you return to the Design Editor.

When you first see the main display area, it shows the default Design
Table view of the design (see preceding example). There is a context menu,
available by right-clicking on the title bar, in which you can change the view
of the design to 1-D, 2-D, 3-D, 4-D, and pairwise design projections, 2-D and
3-D constraint views, and the table view (also under the View menu). This
menu also allows you to split the display either horizontally or vertically so
that you simultaneously have two different views on the current design. You
can also use the toolbar buttons to do this. The split can be merged again.
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After splitting, each view has the same functionality; that is, you can continue
to split views until you have as many as you want. When you click a view, its
title bar becomes blue to show it is the active view.

The currently available designs are displayed on the left in a tree structure.
For details, see “The Design Tree”.

Display Options

The Design Editor can display multiple design views at once, so while working
on a design you can keep a table of design points open in one corner of the
window, a 3-D projection of the constraints below it and a 2-D or 3-D plot of
the current design points as the main plot. The following example shows
several views in use at once.
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The current view and options for the current view are available either through
the context menu or the View menu on the Design Editor window.

1 Change the main display to 3-D Projection view.
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2 You can rotate the projection with click-drag mouse movement. View your
design in several projections (singly, or simultaneously by dividing the
pane) by using the right-click context menu in the display pane.
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Using the Prediction Error Variance Viewer

In this section...

“Introducing the Prediction Error Variance Viewer” on page 6-22

“Improving the Design” on page 6-25

Introducing the Prediction Error Variance Viewer
A useful measure of the quality of a design is its prediction error variance
(PEV). The PEV hypersurface is an indicator of how capable the design is in
estimating the response in the underlying model. A bad design is either not
able to fit the chosen model or is very poor at predicting the response. The
Prediction Error Variance Viewer is only available for linear models. The
Prediction Error Variance Viewer is not available when designs are rank
deficient; that is, they do not contain enough points to fit the model. Optimal
designs attempt to minimize the average PEV over the design region.

Select Tools > PEV Viewer.
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The default view is a 3-D plot of the PEV surface.

This shows where the response predictions are best. This example optimal
design predicts well in the center and the middle of the faces (one factor high
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and the other midrange), but in the corners the design has the highest error.
Look at the scale to see how much difference there is between the areas of
higher and lower error. For the best predictive power, you want low PEV
(close to zero).

You can examine PEV for designs and models. The two are related in this way:

Accuracy of model predictions (model PEV)=Design PEV * MSE (Mean Square
Error in measurements).

You can think of the design PEV as multiplying the errors in the data. The
smaller the PEV, the greater the accuracy of your final model. You can read
more about the calculation of PEV in “Prediction Error Variance”.

Try the other display options.

• The View menu has many options to change the look of the plots.

• You can change the factors displayed in the 2-D and 3-D plots. The pop-up
menus below the plot select the factors, while the unselected factors are
held constant. You can change the values of the unselected factors using
the buttons and edit boxes in the Input factors list, top left.

• The Movie option shows a sequence of surface plots as a third input factor’s
value is changed. You can change the factors, replay, and change the frame
rate.

• You can change the number, position, and color of the contours on the
contour plot with the Contours button, as shown.
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Improving the Design
You can further optimize the design by returning to the Optimal Design
dialog, where you can delete or add points optimally or at random. The most
efficient way is to delete points optimally and add new points randomly —
these are the default algorithm settings. Only the existing points need to be
searched for the most optimal ones to delete (the least useful), but the entire
candidate set has to be searched for points to add optimally.

To strengthen the current optimal design:

1 Return to the Design Editor window.

2 Click the Optimal Design button in the toolbar again to reenter the dialog,
and add 60 more points. Keep the existing points (which is the default).
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3 Click OK and watch the optimization progress, then click Accept when the
number of iterations without improvement starts increasing.

4 View the improvements to the design in the main displays.

5 Once again select Tools > PEV Viewer and review the plots of prediction
error variance and the new values of optimality criteria in the optimality
frame (bottom left). The shape of the PEV projection might not change
dramatically, but note the changes in the scales as the design improves.
The values of D, V, and G optimality criteria will also change (you have to
click Calculate to see the values).

To see more dramatic changes to the design, return to the Design Editor
window (no need to close the PEV viewer).

1 Split the display so you can see a 3-D projection at the same time as a
Table view.

2 You can sort the points to make it easier to select points in one corner. For
example, to pick points where N is 100 and L is 0,

a Select Edit > Sort Points.

b Choose to sort by N only (reduce the number of sort variables to one)
and click OK.

3 Choose Edit > Delete Point.

4 Using the Table and 3-D views as a guide, in the Delete Points dialog, pick
six points to remove along one corner. Add the relevant point numbers to
the delete list by clicking the add (>) button.

5 Click OK to remove the points. See the changes in the main design displays
and look at the new Surface plot in the PEV viewer (see the example
following).
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Creating Classical Designs

In this section...

“Adding a Classical Design” on page 6-28

“Classical Design Browser” on page 6-30

“Setting Up and Viewing a Classical Design” on page 6-31

Adding a Classical Design

1 In the Design Editor window, select the Optimal design in the design tree
by clicking.

2 Add a new design. Use the first toolbar button, or select File > New.

A new child node appears in the tree, called Optimal_1. Notice that the
parent node now has a padlock on the icon. This indicates it is locked.
This maintains the relationship between designs and their child nodes.
The tree arrangement lets you try different operations starting from a
basic design, then select the most appropriate one to use. The hierarchy
allows clear viewing of the effects of changes on designs. The locking of
parent designs also gives you the ability to easily reverse out of changes by
retreating back up the tree.

3 Select the new design node in the tree. Notice that the display remains the
same — all the points from the previous design remain, to be deleted or
added to as necessary. The new design inherits all its initial settings from
the currently selected design and becomes a child node of that design.

4 Rename the new node Classical by clicking again or by pressing F2.

5 Click the button in the toolbar or select Design > Classical > Design
Browser.
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Note In cases where the preferred type of classical design is known,
you can go straight to one of the five options under Design > Classical.
Choosing the Design Browser option allows you to see graphical previews
of these same five options before making a choice.

A dialog appears because there are already points from the previous design.
You must choose between replacing and adding to those points or keeping
only fixed points from the design.

6 Choose the default, replace current points with a new design, and click OK.

The Classical Design Browser appears.
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Classical Design Browser

In the Design Style drop-down menu, there are five classical design options:

• Central Composite

Generates a design that has a center point, a point at each of the design
volume corners, and a point at the center of each of the design volume faces.
You can choose a ratio value between the corner points and the face points
for each factor and the number of center points to add. You can also specify
a spherical design. Five levels are used for each factor.

• Box-Behnken

Similar to Central Composite designs, but only three levels per factor are
required, and the design is always spherical in shape. All the design points
(except the center point) lie on the same sphere, so there should be at least
three to five runs at the center point. There are no face points. These
designs are particularly suited to spherical regions, when prediction at
the corners is not required.

• Full Factorial
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Generates an n-dimensional grid of points. You can choose the number of
levels for each factor and the number of additional center points to add.

• Plackett Burman

These are “screening” designs. They are two-level designs that are designed
to allow you to work out which factors are contributing any effect to the
model while using the minimum number of runs. For example, for a
30-factor problem this can be done with 32 runs.

• Regular Simplex

These designs are generated by taking the vertices of a k-dimensional
regular simplex (k = number of factors). For two factors a simplex is a
triangle; for three it is a tetrahedron. Above that are hyperdimensional
simplices. These are economical first-order designs that are a possible
alternative to Plackett Burman or full factorials.

Setting Up and Viewing a Classical Design

1 Choose a Box-Behnken design.

2 Reduce the number of center points to 1.

3 View your design in different projections using the tabs under the display.

4 Click OK to return to the Design Editor.

5 Use the PEV Viewer to see how well this design performs compared to the
optimal design created previously; see the following illustration.
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As you can see, this is not a realistic comparison, as this design has only 13
points (you can find this information in the bottom left of the main Design
Editor display), whereas the previous optimal design had 100, but this is a
good illustration of leverage. A single point in the center is very bad for the
design, as illustrated in the PEV viewer surface plot. This point is crucial and
needs far more certainty for there to be any confidence in the design, as every
other point lies on the edge of the space. This is also the case for Central
Composite designs if you choose the spherical option. These are good designs
for cases where you are not able to collect data points in the corners of the
operating space.

If you look at the PEV surface plot, you should see a spot of white at the
center. This is where the predicted error variance reaches 1. For surfaces that
go above 1, the contour at 1 shows as a white line, as a useful visual guide to
areas where prediction error is large.

1 Select Movie, and you see this white contour line as the surface moves
through the plane of value 1.
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2 Select the Clip Plot check box. Areas that move above the value of 1 are
removed. The following example explains the controls.
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Using the Design Evaluation Tool
The Design Evaluation Tool is available for linear models only. See also .

1 Return to the Design Editor and select Tools > Evaluate Designs.

2 Choose the Box-Behnken design and click OK in the Select Designs dialog.

The Design Evaluation Tool displays a large amount of statistical
information about the design.

3 Select Hat Matrix from the list on the right.

4 Click the Leverage Values button.

Note that the leverage of the central point is 1.00 (in red) and the
leverage of all other points is less than this. The design would clearly be
strengthened by the addition of more central points. Obviously, this is a
special case, but for any kind of design, the Design Evaluation Tool is a
powerful way to examine properties of designs.

5 Select Design Matrix from the list box.

6 Click the 3D Surface button in the toolbar.
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This illustrates the spherical nature of the current design. As usual, you can
rotate the plot by clicking and dragging with the mouse.

There are many other display options to try in the toolbar, and in-depth
details of the model terms and design matrices can all be viewed. You can
export any of these to the workspace or a .mat file using the Export box.
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Improving the Design

To strengthen the current Box-Behnken design near the center region:

1 Close the Design Evaluation Tool.

2 Return to the Design Editor window.

3 Select Design > Classical > Box-Behnken.

4 Click OK to replace the current points with a new design.

5 Increase the number of center points and click OK.

6 Once again select Tools > PEV Viewer and review the plots of prediction
error variance and the new values of optimality criteria in the optimality
frame (bottom left).

7 Review the leverage values of the center points. From the Design Editor
window, use Tools > Evaluate Design and go to Hat Matrix.

8 Try other designs from the Classical Design Browser. Compare Full
Factorial with Central Composite designs; try different options and use the
PEV viewer to choose the best design.

Note You cannot use the PEV viewer if there are insufficient points in the
design to fit the model. For example, you cannot fit a quadratic with less
than three points, so the default Full Factorial design, with two levels for
each factor, must be changed to three levels for every factor before you can
use the PEV viewer.

9 When you are satisfied, return to the Design Editor window and choose
Edit > Select as Best. You will see that this design node is now
highlighted in blue in the tree. This can be applied to any design.

When you are creating designs before you start modeling, the design that
you select as best is the one used to collect data.
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Creating Space-Filling Designs
Space-filling designs should be used when there is little or no information
about the underlying effects of factors on responses. For example, they
are most useful when you are faced with a new type of engine, with little
knowledge of the operating envelope. These designs do not assume a
particular model form. The aim is to spread the points as evenly as possible
around the operating space. These designs literally fill out the n-dimensional
space with points that are in some way regularly spaced. These designs can
be especially useful with nonparametric models such as radial basis functions
(a type of neural network).

1 Add a new design by clicking the button in the toolbar.

A new Classical child node appears in the tree. Select it by clicking. As
before, the displays remain the same: the child node inherits all points
from the parent design. Notice that in this case the parent node does not
acquire a padlock to indicate it is locked — it is blue and therefore selected
as the best design. Designs are locked when they are selected as best.

2 Rename the new node Space Filling (click again or press F2).

3 Select Design > Space Filling > Design Browser, or click the Space
Filling Design button on the toolbar.

4 Click OK in the dialog to replace the current design points with a new
design.

The Space Filling Design Browser appears.

Note As with the Classical Design Browser, you can select the three of
design you can preview in the Space Filling Design Browser from the
Design > Space Filling menu in situations when you already know the
type of space-filling design you want.
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1 Select Latin Hypercube Sampling from the Design Style drop-down
menu.

2 Leave the default Number of points, and the default Selection criteria.

3 Observe the Enforce Symmetrical Points check box is selected by
default. This creates a design in which every design point has a mirror
design point on the opposite side of the center of the design volume and an
equal distance away. Restricting the design in this way tends to produce
better Latin Hypercubes.

4 Use the tabs under the display to view 2-D and 3-D previews.

5 Click OK to calculate the Latin Hypercube and return to the main Design
Editor.

6 Use the Design Evaluation Tool and PEV Viewer to evaluate this design.
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Applying Constraints
In many cases, designs might not coincide with the operating region
of the system to be tested. For example, a conventional stoichiometric
AFR automobile engine normally does not operate with high exhaust gas
recirculation (EGR) in a region of low speed (n) and low load (l). You cannot
run 15% EGR at 800 RPM idle with a homogeneous combustion process.
There is no point selecting design points in impractical regions, so you
can constrain the candidate set for test point generation. Only optimal
designs have candidate sets of points; classical designs have set points, and
space-filling designs distribute points between the coded values of (1, -1).

You would usually set up constraints before making designs. Applying
constraints to classical and space-filling designs simply removes points outside
the constraint. Constraining the candidate set for optimal designs ensures
that design points are optimally chosen within the area of interest only.

Designs can have any number of geometric constraints placed upon them.
Each constraint can be one of four types: an ellipsoid, a hyperplane, a 1-D
lookup table, or a 2-D lookup table.

To add a constraint to your currently selected design:

1 Select Edit > Constraints from the Design Editor menus.

2 The Constraints Manager dialog appears. Click Add.

The Constraint Editor dialog with available constraints appears. The
default 1D Table is selected in the Constraint Type drop-down menu.
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3 You can select the appropriate factors to use. For this example, choose
speed (N) and air/fuel ratio (A) for the X and Y factors.

4 Move the large dots (click and drag them) to define a boundary. The
Constraint Editor should look something like the following.
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5 Click OK.

Your new constraint appears in the Constraint Manager list box. Click OK
to return to the Design Editor. A dialog appears because there are points in
the design that fall outside your newly constrained candidate set.

• You can click Continue to delete the points outside the constraint, or
cancel the constraint. Note that fixed points are not deleted by this
process.

• For optimal designs you see the following dialog, where you also have the
option to replace the points with new ones chosen (optimally if possible)
within the new candidate set.

6 The default if you are constraining your space-filling design is to Continue
and remove the points outside the new constraint area; choose this.
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If you examine the 2-D projection of the hypercube, you will notice the
effects of the new constraint on the shape of the design, as shown in the
preceding example.

7 Right-click the display pane to reach the context menu, and select Current
View > 3D Constraints.
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These views are intended to give some idea of the region of space that is
currently available within the constraint boundaries.

8 Return to the Constraint Editor, choose Edit > Constraint, and click Add
in the Constraint Manager.

9 Add an ellipsoid constraint. Choose Ellipsoid from the drop-down menu
of constraint types.

Enter 0 as the value for the L diagonal in the table, as shown. This will
leave L unconstrained (a cylinder). The default ellipsoid constraint is a
sphere. To constrain a factor, if you want a radius of r in a factor, enter
1/(r^2). For this example, leave the other values at the defaults. Click
OK to apply the constraint.

10 Click OK, click OK again in the Constraint Manager, and click Continue
to remove design points outside the new candidate set (or Replace if you
are constraining an optimal design). Examine the new constraint 3-D plot
illustrated.
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Both constraints are applied to this design.
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Saving Designs
To save your design:

1 Choose File > Export Design. The selected design only is exported.

There are three Export to options:

• Design Editor file generates a Design Editor file (.mvd).

• Comma separated format file exports the matrix of design points to
a CSV (comma-separated values) file. You can include factor symbols
and/or convert to coded values by selecting the check boxes.

• Workspace exports the design matrix to the workspace. You can convert
design points to a range of [-1, 1] by selecting the check box.

2 Choose a Design Editor file.

3 Choose the destination file by typing Designtutorial.mvd in the edit box.

4 Click OK to save the file.
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Tutorial: Data Editor

This section discusses the following topics:

Introduction to the Data Editor
(p. 7-2)

Introducing all the functionality
of the Data Editor and the tasks
covered in this tutorial.

Loading the Data (p. 7-3) How to open the Data Editor and
use the Data Import Wizard to load
some data.

Viewing and Editing the Data (p. 7-6) How to use the Data Editor displays
to investigate your data.

User-Defined Variables and Filtering
(p. 7-13)

How to define your own new
variables and filters to remove
unwanted data.

Storage (p. 7-18) How to store plot preferences,
user-defined variables, filters, and
test notes.

Test Groupings (p. 7-20) How to group your data for modeling
by using the Define Test Groupings
dialog.

Matching Data to Designs (p. 7-24) How to use the Cluster Plot views to
select data for modeling and match
data to an experimental design.



7 Tutorial: Data Editor

Introduction to the Data Editor
The Data Editor is a GUI for loading data, creating new variables, and
creating constraints for that data.

Data can be loaded from files (Microsoft® Excel® files, MATLAB® files, text
files) and from the MATLAB workspace. You can merge data in any of these
forms with previously loaded data sets (providing there is no conflict in the
form of the data) to produce a new data set. Test plans can use only one data
set, so the merging function allows you to combine records and variables from
different files in one model.

You can define new variables, apply filters to remove unwanted data, and
apply test notes to filtered tests. You can store and retrieve these user-defined
variables and filters for any data set, and you can store plot settings. You can
change and add records and apply test groupings, and you can match data
to designs. You can also write your own data loading functions, see “Data
Loading Application Programming Interface” in the "Data" section.

The following tutorial is a step-by-step guide to the following:

• Loading data from an Excel® file

• Viewing and editing the data

• Creating a user-defined variable

• Applying a filter to the data

• Sequence of variables

• Deleting and editing variables and filters

• Placing user-defined variables and filters into storage

• Defining test groupings

• Matching data to experimental designs
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Loading the Data

In this section...

“Entering the Data Editor” on page 7-3

“Loading a Data File” on page 7-4

Entering the Data Editor
You can create, copy, rename and delete data objects from the Project view
in the Model Browser.

To enter the Data Editor and create a new data object, from the Project node,
select Data > New Data (or click the New Data Object toolbar button).

The Data Editor appears.
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There are no plots until some data has been loaded. The views shown depend
on whether you have previously looked at the Data Editor, as it retains
memory of your previous layout.

By default the new data object is called Data Object. Select File > Rename
Data to enter a new name.

Loading a Data File

1 Click the Open File icon in the toolbar to load data from a file.

The Data Import Wizard appears to select a file.

2 Use the Browse button to find and select the Holliday.xls data file in the
mbctraining folder. Double-click to load the file. You can also enter the
file pathname in the edit box. The pop-up menu contains the file types
recognized by the Model Browser (Excel File, Delimited Text File,
MATLAB Data File). Leave this at the default, Auto. This setting tries to
determine what type of file is selected by looking at the file extension.

3 Click Next.
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4 The Data Import Wizard displays a summary screen showing the total
number of records and variables imported, and you can view each variable’s
range, mean, standard deviation, and units in the list box. You can
double-click variables in the list to edit names and units. Click Finish to
accept the data. (If you have data loaded already, you cannot click Finish
but must continue to the data merging functions.)

The Data Import Wizard disappears and the view returns to the Data Editor,
which now contains the data you just loaded.
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Viewing and Editing the Data

In this section...

“Viewing Data” on page 7-6

“Using Notes to Sort Data for Plotting” on page 7-8

“Removing Outliers and Problem Tests” on page 7-9

“Reordering and Editing Data” on page 7-10

Viewing Data
As shown in the following figure you can split the views to display several
plots at once, as in the Design Editor. You can use the right-click context
menus, the toolbar buttons, or the View menu to split views. You can choose
2-D plots, 3-D plots, multiple data plots, cluster plots, data tables, and list
views of filters, variables, test filters, test notes and cluster information.
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In the 2-D plot view, the list boxes on the left allow a combination of tests
and variables to be plotted simultaneously. The example shown plots torque
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against spark for multiple tests on the left, and speed for three selected tests
on the right. You can multiple-select tests and y-axes to compare the data in
the tests (hold down Shift or Control). For more details about each view,
see “Data Editor Views” in the Model-Based Calibration Toolbox™ Model
Browser User’s Guide.

You can use test notes to investigate problem data and decide whether some
points should be removed before modeling. The following steps cover using
notes and views to sort and investigate your data.

Using Notes to Sort Data for Plotting

1 Right-click a view and select Current View > Multiple Data Plot.

2 Right-click the new view and select Viewer Options > Add Plot.

The Plot Variables Setup dialog appears.

3 Select spark and click to add to the X Variable box, then select tq and
click to add to the Y Variable box. Click OK to create the plot.

4 Click in the Tests list to select a test to plot (or Shift-click, Ctrl-click, or
click and drag to select multiple tests).

5 Right-click the view and select Split View > Test Note Definitions.

The current view is divided into two.

6 Select Tools > Test Notes > Add.

The Test Note Editor appears.

7 Enter mean(tq)<10 in the top edit box to define the tests to be noted, and
enter Low torque in the Test Note edit box. Leave the note color at the
default and click OK.

8 Right-click the Test Notes List view and select Split View > Notes View.

The current view is split into two. You can sort records by notes in the
new Notes view.
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9 Click the column header of the new Low torque note in the Notes view.
All the tests that satisfy the condition mean(tq)<10 are sorted to the top of
the list.

10 Now create some more views.

• Right-click a view and select Split View > Data Table.

• Right-click a view and select Split View > 3D Data Plot.

11 In the Notes view, click particular tests with the Low torque note.

Notice that when you select a test here, the same test is plotted in the
multiple data plots, the 3D data plot, and highlighted in the data table. You
can use the notes in this way to easily identify problem tests and decide
whether you should remove them.

Removing Outliers and Problem Tests

1 Click a point on the Multiple Data Plots view.

The point is outlined in red on the plot, and highlighted in the data
table. You can remove points you have selected as outliers by selecting
Tools > Filters > Remove Outliers (or use the keyboard shortcut
Ctrl+A). Select Tools > Filters > Restore Outliers (or use the keyboard
shortcut Ctrl+Z) to open a dialog where you can choose to restore any
or all removed points.

You can remove individual points as outliers, or you can remove records
or entire tests with filters.

2 For example, after examining all the Low torque noted tests, you could
decide they should be filtered out.

a Select Split View > Test Filter Definitions.

b Select Tools > Test Filters > Add.

c The Test Filter Editor appears. Enter mean(tq)>10 to keep all tests
where the mean torque is greater than 10, and click OK.

In the new Test Filter List view, you should see the new test filter
successfully applied and the number of records removed.
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Similarly, you can use filters to remove individual records rather than
entire tests, which you will cover in a later section “Applying a Filter” on
page 7-14.

3 To view removed data in the table view, right-click and select Viewer
Options > Allow Editing. Removed records are red. To view removed
data in the 2-D and Multiple Data Plots, select Viewer Options >
Properties and select the box Show bad data.

Reordering and Editing Data
To change the display, right-click a 2-D plot and select Viewer
Options > Properties. You can alter grid and plot settings including lines to
join the data points.

Reorder X Data in the Plot Properties dialog can be useful when record order
does not produce a sensible line joining the data points. For an illustration of
this:

1 Ensure you are displaying a 2-D plot. You can right-click on any plot and
select Current Plot > 2-D Plot, or use the context menu split commands
to add new views.

2 Right-click on a 2-D plot and select Viewer Options > Properties and
choose solid from the Data Linestyle drop-down menu, as shown below.
Click OK.

3 Choose afr for the y-axis.

4 Choose Load for the x-axis.
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5 Select test 590. You must use the test controls contained within the 2-D
plot. The Tests pane on the left applies to other views: tables and 3-D and
multiple data plots.

6 Right-click and select Viewer Options > Properties and choose Reorder
X Data. Click OK.

This command replots the line from left to right instead of in the order of
the records, as shown.
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7 Right-click and select Split Plot > Data Table to split the currently
selected view and add a table view. You can select particular test numbers
in the Tests pane on the left of the Data Editor. You can right-click to
select Viewer Options > Allow Editing, and then you can double-click
cells to edit them.
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User-Defined Variables and Filtering

In this section...

“Adding New Variables” on page 7-13

“Applying a Filter” on page 7-14

“Sequence of Variables” on page 7-16

“Deleting and Editing Variables and Filters” on page 7-17

Adding New Variables
You can add new variables to the data set.

1 Select Tools > Variables > Add.

Alternatively, click the toolbar button.

The Variable Editor appears.

You can define new variables in terms of existing variables. You define
the new variable by writing an equation in the edit box at the top of the
Variable Editor dialog.

2 Define a new variable called POWER that is defined as the product of two
existing variables, tq and n, by entering POWER=tq*n, as seen in the
example following. You can also double-click variable names and operators
to add them, which can be useful to avoid typing mistakes in variable
names, which must be exact including case.
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3 Click OK to add this variable to the current data set.

4 This new variable can be seen in the Data Editor by right-clicking in a view
and selecting Split Plot > Variable Definitions. A new view appears
containing a list of your user-defined variables. You can also now see 7 +
1 variables next to the top information bars.

Applying a Filter
A filter is a constraint on the data set you can use to exclude some records.
You use the Filter Editor to create new filters.

1 Choose Tools > Filters > Add, or click the button in the Data Editor
window.

The Filter Editor dialog appears.
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You define the filter using logical operators on the existing variables.

2 Keep all records with speed (n) greater than 1000. Type n (or double-click
on the variable n), then type >1000.

3 Click OK to impose this filter on the current data set.

4 This new filter can be seen in the Data Editor by right-clicking in a view
(try the Variable List view) and selecting Split Plot > Filter List. A new
view appears containing a list of your user-defined filters and information
on how many records are removed by the new filter. You can also now
see 141/270 records next to the top information bars and a red section
illustrating the records removed by the filter.
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Sequence of Variables
You can change the order of user-defined variables in the Variable Editor
list using the arrow buttons.

Select Tools > Variables > Edit to open the Variable Editor.

Example:

1 Define two new variables, New1 and New2. Note that you can use the
buttons to add or remove a list item to create or delete variables in this
view. Click the button to ’Add item’ to add a new variable, and enter the
definitions shown.

Notice that New2 is defined in terms of New1. New variables are added
to the data in turn and hence New1 must appear in the list before New2,
otherwise New2 is not well defined.

2 Change the order by clicking the down arrow in the Variable Editor to
produce this erroneous situation. Click OK to return to the Data Editor
and in the variable list view you see the following error message:
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3 Use the arrows to order user-defined variables in legitimate sequence.

Deleting and Editing Variables and Filters
You can delete user-defined variables and filters.

Example:

1 To delete the added variable New1, select it in a Variable List view and
press the Delete key.

2 You can also delete variables in the Variable Editor by clicking the Remove
Item button.

Similarly, you can delete filters by selecting the unwanted filter in a Filter
List view and using the Delete key.

You can also edit current user-defined variables and filters using the relevant
menu items or toolbar buttons.
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Storage
Storage allows you to store plot preferences, user-defined variables, filters,
and test notes so they can be applied to other data sets loaded later in the
session, and to other sessions.

You can open the Storage window from the Data Editor window in either of
these ways:

• Using the menu Tools > Open Storage

• Using the toolbar button

The example above contains a variety of stored objects. The toolbar buttons
Store Current Variables and Store Current Filters, Test Filters or Test Notes
allow you to put all user-defined variables and filters from the current session
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into storage. They appear in the Storage window. All stored user-defined
variables and filters appear here regardless of which project is open — once
created and brought into storage, they remain there. If you do not delete
them, they are there indefinitely. You can also store view settings with the
toolbar button Store Current Data Editor Layout.

The Data Editor retains memory of your plot type settings and when reopened
will display the same types of views. You can also use Store Current Data
Plots to save the details of your Multiple Data Plots, such as which factors to
display, line style, grid, etc.

You can double-click any item in storage to append the object to the current
views. For example if you double-click a Data Editor Layout object, the
current views will be replaced by the saved views. Other objects add items
to the current views.

You can select Export to File to send the stored objects to a file. You might do
this to move the objects to a different user or machine. Select Import from
File to bring such variables and filters into storage, and use Append Stored
Object to add items from storage to your current project.

1 Use the controls to bring the variable POWER and the filter you just created
into storage.

2 Close the Storage window.
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Test Groupings
The Define Test Groupings dialog collects records of the current data object
into groups; these groups are referred to as tests.

The dialog is accessed from the Data Editor in either of these ways:

• Using the menu Tools > Change Test Groupings

• Using the toolbar button

When you enter the dialog, a plot is displayed as the variable logno is
automatically selected for grouping tests.

Select another variable to use in defining groups within the data.

1 Select n in the Variables list.

2 Click the button to add the variable (or double-click n).

The variable n appears in the list view on the left as seen in the following
example. You can now use this variable to define groups in the data. The
maximum and minimum values of n are displayed. The Tolerance is
used to define groups: on reading through the data, when the value of n
changes by more than the tolerance, a new group is defined. You change
the Tolerance by typing directly in the edit box.

You can define additional groups by selecting another variable and choosing
a tolerance. Data records are then grouped by n or by this additional
variable changing outside their tolerances.

3 Clear the box Group by for logno. Notice that variables can be plotted
without being used to define groups.

4 Add load to the list by selecting it on the right and clicking .

5 Change the load tolerance to 0.01 and watch the test grouping change
in the plot.
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6 Clear the Group By check box for load. Now this variable is plotted
without being used to define groups.

The plot shows the scaled values of all variables in the list view (the color
of the tolerance text corresponds to the color of data points in the plot).
Vertical pink bars show the tests (groups). You can zoom the plot by
Shift-click-dragging or middle-click-dragging the mouse; zoom out again by
double-clicking.

7 Select load in the list view (it becomes highlighted in blue) and remove it

from the list by clicking the button.

8 Double-click to add spark to the list, and clear the Group By check box.
Select logno as the only grouping variable.

It can be helpful to plot the local model variable (in this case spark) to
check you have the correct test groupings, as shown below. The plot shows
the sweeps of spark values in each test while speed (n) is kept constant.
Speed is only changed between tests, so it is a global variable. Try zooming
in on the plot to inspect the test groups; double-click to reset.
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Reorder records allows records in the data set to be reordered before
grouping. Otherwise, the groups are defined using the order of records
in the original data object.

Show original displays the original test groupings if any were defined.

One test/record defines one test per record, regardless of any other
grouping. This is required if the data is to be used in creating one-stage
models.

Test number variable contains a pop-up menu showing all the variables
in the current data set. Any of these could be selected to number the tests.

9 Make sure logno is selected for the Test number variable.
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This changes how the tests are displayed in the rest of the Model Browser.
Test number can be a useful variable for identifying individual tests in
Model Browser and Data Editor views (instead of 1,2,3...) if the data was
taken in numbered tests and you want access to that information during
modeling.

If you chose none from the Test number variable list, the tests would be
numbered 1,2,3 and so on in the order in which the records appear in the
data file. With logno chosen, you will see tests in the Data Editor listed
as 586, 587 etc.

Every record in a test must share the same test number to identify it, so
when you are using a variable to number tests, the value of that variable is
taken in the first record in each test.

Test numbers must be unique, so if any values in the chosen variable are
the same, they are assigned new test numbers for the purposes of modeling
(this does not change the underlying data, which retains the correct test
number or other variable).

10 Click OK to accept the test groupings defined and dismiss the dialog.

You return to the Data Editor window. At the top is a summary of this data
set now that your new variable has been added and a new filter applied
(example shown below).

11 The number of records shows the number of values left (after filtration) of
each variable in this data set, followed by the original number of records.
The color coded bars also display the number of records removed as a
proportion of the total number. The values are collected into a number
of tests; this number is also displayed. The variables show the original
number of variables plus user-defined variables.
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Matching Data to Designs

In this section...

“Introducing Matching Data to Designs” on page 7-24

“Tolerances and Cluster Information” on page 7-27

“Understanding Clusters” on page 7-30

Introducing Matching Data to Designs
We provide an example project to illustrate the process of matching
experimental data to designs.

Experimental data is unlikely to be identical to the desired design points. You
can use the Cluster Plot view in the Data Editor to compare the actual data
collected with your experimental design points. Here you can select data for
modeling. If you are interested in collecting more data, you can update your
experimental design by matching data to design points to reflect the actual
data collected. You can then optimally augment your design (using the Design
Editor) to decide which data points it would be most useful to collect, based
on the data obtained so far.

You can use an iterative process: make a design, collect some data, match
that data with your design points, modify your design accordingly, then collect
more data, and so on. You can use this process to optimize your data collection
process in order to obtain the most robust models possible with the minimum
amount of data.

1 To see the data matching functions, select File > Open Project and
browse to the file Data_Matching.mat in the mbctraining directory.

2 Click the Spark Sweeps node in the model tree to change to the test plan
view, as shown.

Here you can see the two-stage test plan with model types and inputs set
up. The global model has an associated experimental design (which you
could view in the Design Editor). You are going to use the Data Editor to
examine how closely the data collected so far matches to the experimental
design.
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3 Click the Select Data button ( ) in the toolbar.

The Data Editor appears.

4 You need a Cluster View to examine design and data points. Right-click a
view in the Data Editor and select Current View > Cluster View.
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In the Cluster Plot you can see colored areas containing points. These
are “clusters” where closely matching design and data points have been
selected by the matching algorithm.

Tolerance values (derived initially from a proportion of the ranges of the
variables) are used to determine if any data points lie within tolerance of
each design point. Data points that lie within tolerance of any design point
are matched to that cluster. Data points that fall inside the tolerance of
more than one design point form a single cluster containing all those design
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and data points. If no data points lie within tolerance of a design point, it
remains unmatched and no cluster is plotted.

Notice the shape formed by overlapping clusters. The example shown
outlined in pink is a single cluster formed where a data point lies within
tolerance of two design points.

Note that on this plot you can see other unselected points that appear
to be contained within this cluster. You need to track points through
other factor dimensions using the axis controls to see where points are
separated beyond tolerance. You will do this in a later step of this tutorial,
“Understanding Clusters” on page 7-30.

Tolerances and Cluster Information

1 To edit tolerance values, select Tools > Tolerances.

The Tolerance Editor appears. Here you can change the size of clusters
in each dimension. Observe that the LOAD tolerance value is currently
100. This accounts for the elongated shape (in the LOAD dimension) of
the clusters in the current plot, because this tolerance value is a high
proportion of the total range of this variable.
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2 Click the LOAD edit box and enter 20, as shown. Click OK.

Notice the change in shape of the clusters in the Cluster Plot view.

3 Shift click (center-click) and drag to zoom in on an area of the plot, as
shown. You can double-click to return to the full size plot.
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4 Click a cluster to select it. Selected points or clusters are outlined in pink.
If you click and hold, you can inspect the values of global variables at the
selected points (or for all data and design points if you click on a cluster).
You can use this information to help you decide on suitable tolerance values
if you are trying to match points.

You need to ensure you are displaying a Cluster Information list view
to select or exclude points. The Data Editor retains memory of previous
data views and if you had a cluster plot in your saved settings then this
plot is used.

5 If you do not already have a Cluster Information list view displayed,
right-click the Cluster Plot view and select Split Vertically. A new view
appears underneath the cluster plot. Right-click the new view and select
Current Plot > Cluster Information.
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Notice that the Cluster Information list view shows the details of all data
and design points contained in the selected cluster. You use the check boxes
here to select or exclude data or design points. Click different clusters to
see a variety of points. The list view shows the values of global variables at
each point, and which data and design points are within tolerance of each
other. Your selections here determine which data will be used for modeling,
and which design points will be replaced by actual data points.

Note All data points with a selected check box will be used for modeling.
All data points with a cleared check box will be removed from the data set,
and not seen in any other views. This cluster view is the only place you can
restore these excluded data to the data set.

Understanding Clusters
If you are not interested in collecting more data, then there is no need to make
sure the design is modified to reflect the actual data. All data (except those
you exclude by clearing the check boxes) will be used for modeling.

However, if you want your new design (called Actual Design) to accurately
reflect what data has been obtained so far, for example to collect more data,
then the cluster matching is important. All data points with a selected check
box will be added to the new Actual Design, except those in red clusters. The
color of clusters indicates what proportion of selected points it contains as
follows:

• Green clusters have equal numbers of selected design and selected data
points. The data points will replace the design points in the Actual Design.

Note that the color of all clusters is determined by the proportion of selected
points they contain; excluded points (with cleared check boxes) have no
effect. Your check box selections can change cluster color.

• Blue clusters have more data points than design points. All the data points
will replace the design points in the Actual Design.

• Red clusters have more design points than data points. These data points
will not be added to your design as the algorithm cannot choose which
design points to replace, so you must manually make selections to deal
with red clusters if you want to use these data points in your design. The
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example Cluster Information list view shows a selected red cluster with
more design than data points.

If you don’t care about the Actual Design (for example, if you do not
intend to collect more data) and you are just selecting data for modeling,
then you can ignore red clusters. The data points in red clusters are
selected for modeling.

1 Right-click the Cluster Plot and select Viewer Options > Select
Unmatched Data. Notice that the remaining unmatched data points
appear in the Cluster Information list view. Here you can use the check
boxes to select or exclude unmatched data in the same way as points within
clusters.

2 Select a cluster, then use the drop-down menu to change the Y-Axis
factor to INJ. Observe the selected cluster now plotted in the new factor
dimensions of SPEED and INJ.

You can use this method to track points and clusters through the
dimensions. This can give you a good idea of which tolerances to change
in order to get points matched. Remember that points that do not form a
cluster may appear to be perfectly matched when viewed in one pair of
dimensions; you must view them in other dimensions to find out where they
are separated beyond the tolerance value. You can use this tracking process
to decide whether you want particular pairs of points to be matched, and
then change the tolerances until they form part of a cluster.

3 Clear the Equal Data and Design check box in the Cluster Plot view.
You control what is plotted using these check boxes.
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This removes the green clusters from view, as shown. These clusters are
matched; you are more likely to be interested in unmatched points and
clusters with uneven numbers of data and design points. Removing the
green clusters allows you to focus on these points of interest. If you want
your new Actual Design to accurately reflect your current data, your aim
is to get as many data points matched up to design points as possible; that
is, as few red clusters as possible.

4 Clear the check box for More Data than Design. You may also decide to
ignore blue clusters, which contain more data points than design points.
These design points will be replaced by all data points within the cluster.
An excess of data points is unlikely to be a concern.

However, blue clusters may indicate that there was a problem with the
data collection at that point, and you may want to investigate why more
points than expected were collected.
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5 Select one of the remaining red clusters. Both of these have two design
points within tolerance of a single data point.

6 Choose one of the design points to match to the data point, then clear the
check box of the other design point. The cleared design point remains
unchanged in the design. The selected design point will be replaced by the
matched data point.

Notice that the red cluster disappears. This is because your selection
results in a cluster with an equal number of selected data and design points
(a green cluster) and your current plot does not display green clusters.

7 Repeat for the other red cluster.

Now all clusters are green or blue. There are two remaining unmatched
data points.

8 Clear the Unmatched Design check box to locate the unmatched data
points. Select Unmatched Design check box again — you need to see
design points to decide if any are close enough to the data points that they
should be matched.
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9 Locate and zoom in on an unmatched data point. Select the unmatched data
point and a nearby design point by clicking, then use the axis drop-down
menus to track the candidate pair through the dimensions. Decide if any
design points are close enough to warrant changing the tolerance values to
match the point with a design point.

10 Recall that you can right-click the Cluster View and select Viewer
Options > Select Unmatched Datato display the remaining unmatched
data points in the Cluster Information list view. Here you can use the
check boxes to select or exclude these points. If you leave them selected,
they will be added to the Actual Design.

These steps illustrate the process of matching data to designs, to select
modeling data and to augment your design based on actual data obtained.
Some trial and error is necessary to find useful tolerance values. You can
select points and change plot dimensions to help you find suitable values. If
you want your new Actual Design to accurately reflect your experimental
data, you need to make choices to deal with red clusters. Select which design
points in red clusters you want to replace with the data points. If you do not,
then these data points will not be added to the new design.

When you are satisfied that you have selected all the data you want for
modeling, close the Data Editor. At this point, your choices in the cluster
plots will be applied to the data set and a new design called Actual Design
will be created. All the changes are determined by your check box selections
for data and design points.

All data points with a selected check box are selected for modeling. Data
points with cleared check boxes are excluded from the data set. Changes
are made to the existing design to produce the new Actual Design. All
selected data will be added to your new design, except those in red clusters.
Selected data points that have been matched to design points (in green and
blue clusters) replace those design points.

All these selected data points become fixed design points (red in the Design
Editor) and appear as Data in Design (pink crosses) when you reopen the
Data Editor.

This means these points will not be included in clusters when matching
again. These fixed points will also not be changed in the Design Editor when
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you add points, though you can unlock fixed points if you want. This can be
very useful if you want to optimally augment a design, taking into account
the data you have already obtained.
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Tutorial: Feature
Calibration

This section includes the following topics:

What Are Feature Calibrations?
(p. 8-2)

Introduction to feature calibrations.
These allow you to calibrate tables by
comparing a strategy (or collection of
tables) to a model.

Setting Up Calibrations (p. 8-4) How to set up variables and models
in order to calibrate tables.

Setting Up a Feature Calibration
(p. 8-10)

Setting up a strategy (or collection
of tables) and setting up tables to
prepare for calibration.

Calibrating a Feature (p. 8-16) How to calibrate normalizers, tables,
and the whole feature (collection
of tables) at once, by comparing a
strategy and a model.

Exporting Calibrations (p. 8-33) How to export calibrations to file.



8 Tutorial: Feature Calibration

What Are Feature Calibrations?
The feature calibration process within the Model-Based Calibration Toolbox™
product calibrates an estimator, or feature, for a control subsystem in an
electronic control unit (ECU). These features are usually algebraic collections
of one or more tables. You use the features to estimate signals in the engine
that are unmeasurable, or expensive to measure, and are important for engine
control. The toolbox can calibrate the ECU subsystem by directly comparing
it with a plant model of the same feature.

There are advantages to feature calibration compared with simply calibrating
using experimental data. Data is noisy (that is, there is measurement error)
and this can be smoothed by modeling; also models can make predictions for
areas where you have no data. This means you can calibrate more accurately
while reducing the time and effort required for gathering experimental data.

An example of an ECU subsystem control feature estimates the value of
torque, depending on the four inputs: speed, load, air/fuel ratio (AFR), and
spark angle.

A diagram of this ECU subsystem example follows.
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What Are Feature Calibrations?

In this tutorial example, there are three lookup tables:

• A speed-load table

• A modifier, or table, for AFR

• A modifier for spark angle

This tutorial takes you through the various steps required to set up this
feature and then calibrate it using CAGE. You will use CAGE to fill the tables
by comparing them with a torque engine model.

The model is a copy of the torque model built in the Model Browser’s
Quick Start tutorial using engine data. This illustrates how you can use
the Model-Based Calibration Toolbox product to map engine behavior and
transfer this information to engine calibrations. You can construct a model
using the Model Browser; then you can use CAGE to calibrate lookup tables
by reference to the model.
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Setting Up Calibrations

In this section...

“Starting CAGE” on page 8-4

“Setting Up Variables” on page 8-4

“Setting Up Models” on page 8-7

Starting CAGE
Start CAGE by typing

cage

at the MATLAB® prompt.

Note If you have a CAGE session open, select File > New > Project.

Before you can perform a calibration, you must set up the variable dictionary
and models that you want to use.

Setting Up Variables
To set up the variables and constants that you want to use in your calibration,

1 Click Variable Dictionary in the Data Objects pane of CAGE.

The Variable Dictionary view displays all the variables, constants, and
formulas in a session. This is empty until you add some variable items.

There are two ways in which you can set up variables:
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• Import a variable dictionary

• Add variables and constants to your session

After setting up your variables and constants, you can export the variable
dictionary to use in other calibrations.

Importing a Variable Dictionary
To import a variable dictionary,

1 Select File > Import > Variable Dictionary.

2 Select the tutorial.xml file found in matlab\toolbox\mbc\mbctraining
and click Open. CAGE automatically switches to the Variable Dictionary
view.

This imports a set of variables and a constant. In this example, the variable
dictionary contains

• The stoichiometric constant, stoich

• N, engine speed

• L, load

• A, AFR

Your display should resemble the following.
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Adding and Editing Variables and Constants
To add a variable for the spark angle,

1 Click New Variable in the toolbar. This adds a new variable to your
dictionary.
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2 Right-click the new variable and select Rename (or press F2) to rename
the variable.

3 Enter SPK as the name.

4 Set the range of the variable by entering -5 as the Minimum and 50 as
the Maximum.

The variable dictionary enables you to specify different names for the same
variable, and also give descriptions of variables. For example, the variable
spk might be referred to as S or spark in other models.

To ensure that CAGE recognizes an instance of S or spark as the same as
spk, specify the aliases of SPK:

1 Enter S, spark in the Alias edit box.

2 Enter Spark advance (deg) in the Description edit box.

Note The Variable Dictionary is case sensitive: s and S are different.

The variable dictionary enables you to specify a preferred value for a
variable. For example, in the preferred value of the variable, AFR is set as the
stoichiometric constant 14.35.

1 Select SPK and enter 25 in the Set Point edit box to specify the preferred
value.

Setting Up Models
A model in the Model-Based Calibration Toolbox™ product is a function of a
set of variables. Typically, you construct a model using the Model Browser;
then you can use CAGE to calibrate lookup tables by reference to the model.

The following example uses a model of the behavior of torque with varying
spark angle, air/fuel ratio, engine speed, and load.
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Importing a Model
To import a model built using the Model Browser,

1 Select File > Import > Model, which opens a file browser.

2 Browse to matlab\toolbox\mbc\mbctraining, select the tutorial.exm
file (this is a copy of the torque model built in the Model Browser’s Quick
Start tutorial), and click Open. The Model Import Wizard appears.

3 There are two models stored in this file, tq and knot. Highlight tq and
select the check box to Automatically assign/create inputs.

CAGE automatically assigns variables in the variable dictionary to the
model input factors or their aliases (as long as names are exact). If names
are not exact you can select variables manually using the wizard.

4 Click Finish to complete the wizard.

CAGE switches to the Models view, as shown following.
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Setting Up a Feature Calibration

In this section...

“Setting Up a New Feature” on page 8-10

“Setting Up the Strategy” on page 8-12

“Setting Up the Tables” on page 8-13

Setting Up a New Feature
The feature calibration process calibrates an algebraic collection of lookup
tables, or strategy, by comparing the tables to the model.

When you have set up the variables and models, you can set up the feature as
follows:

1 Select File > New > Feature.

CAGE automatically displays the Feature view and creates a new feature.

2 Click the Select Model button. This opens the Select Model dialog. Select
tq (currently the only model in your project) and click OK.

You can see the model appear above the Select Model button.

3 Create a strategy. For instructions, see the next section, “Setting Up the
Strategy” on page 8-12.

A strategy is a collection of tables. The Model-Based Calibration Toolbox™
product uses Simulink® software to enable you to graphically specify the
collection of tables for a feature.

4 After you have created a strategy, the next step is to set up your tables. For
more information, see the section, “Setting Up the Tables” on page 8-13.
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Setting Up the Strategy
The toolbox uses Simulink to graphically specify the strategy.

Importing a Strategy
To import a strategy,

1 Select File > Import > Strategy.

2 Select the file called tutorial.mdl, found in
matlab\toolbox\mbc\mbctraining, and click Open.

3 This opens the Import Strategy dialog, giving you the choice of automatic
or manual import. To view the strategy, click Manual.

This opens the following Simulink window.

This shows how the strategy is built up.

4 Double-click the blue circle labeled Torque_Output.
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Note This closes the Simulink window and parses the new feature into
CAGE.

The New_Feature is the output of the algebraic equation of tables. You can
see this parsed into the Strategy pane as follows:

New_Feature = T(Norm_N(N),Norm_L(L)) + F_A(Norm_A(A)) +
F_SPK(Norm_SPK(SPK))

5 Select View > Full Strategy Display to turn off the full description and
see this simplified expression:

New_Feature = T + F_A + F_SPK

This shows the collection of tables that makes up the new feature — a
torque table T (with normalizers in speed N and load L) combined with
modifier tables depending on the values of air/fuel ratio and spark. You will
fill these tables by using CAGE to compare them with the torque model.

6 Click the plus next to New_Feature to expand the Feature tree and observe
the tables created by importing the strategy: T, F_A, and F_SPK. Expand
each table node in turn to view the normalizers of each. You will define
the sizes of the tables next.

Setting Up the Tables
Currently, the lookup tables have neither rows nor columns, so you must
set up the tables.

Click Calibration Manager or select Tools > Calibration Manager.
The Calibration Manager dialog box opens, so you can specify the number
of breakpoints for each axis.
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To set up table T,

1 Highlight the table T by clicking T in the tree hierarchy.

2 Enter 10 as the number of rows and 12 as the number of columns. This
determines the size of each normalizer.

3 Leave the value for each cell set to 0.

4 Click Apply. The pane changes to show the table is set up.

5 Follow the same procedure for the F_A table. In other words,

a Highlight the F_A node.

8-14



Setting Up a Feature Calibration

b Set the number of rows to be 10 and press Enter.

c Leave the value for each cell set to 0.

d Click Apply.

6 Repeat step 5 for F_SPK.

Note The icons change as you initialize each table or function.

7 Click Close to leave the Calibration Manager.

After completing these steps, you can calibrate the lookup tables.
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Calibrating a Feature

In this section...

“Process For Feature Calibration” on page 8-16

“Calibrating the Normalizers” on page 8-17

“Calibrating the Tables” on page 8-21

“Calibrating the Feature” on page 8-28

Process For Feature Calibration
The feature contains both a strategy (which is a collection of tables) and
a model. You can use CAGE to fill the lookup tables using the model as
a reference.

These are the three steps to calibrate a feature, described in these sections:

1 Calibrate the normalizers.

2 Calibrate the tables.

3 Calibrate the feature as a whole.

Click the expand icon, , to expand the nodes and display all the tables and
normalizers in the feature.
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Each node in the display has a different view and different operations.

Calibrating the Normalizers
Normalizers are the axes for the lookup tables. Currently, Norm_N has 12
breakpoints; the other normalizers have 10 breakpoints each. This section
describes how to set values for the normalizers Norm_N and Norm_L, based on
the torque model, tq.

To display the Normalizer view, select the normalizer Norm_N in the branch
display.
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The Normalizer view has two panes, Norm_N and Norm_L.

In each pane, you see

• An input/output table

• A normalizer display

• A breakpoint spacing display

In both Normalizer panes, the Input Output table and the Normalizer
Display show the position of the breakpoints.

The Breakpoint Spacing display shows a blue slice through the model with
the break points overlaid as red lines.

Placing the Breakpoints Automatically
You now must space the breakpoints across the range of each variable. For
example, Norm_N takes values from 500 to 6500, the range of the engine speed.

To space the breakpoints evenly throughout the data values,

1 Click Initialize in the toolbar. Alternatively, select
Normalizer > Initialize.

This opens a dialog box that suggests ranges for Norm_N and Norm_L.

2 To accept the default ranges of values of the data, click OK.
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A better fit between model and table can often be achieved by spacing the
breakpoints nonlinearly.

1 Click Fill in the toolbar. Alternatively, select Normalizer > Fill.

This opens a dialog box that suggests ranges for Norm_N and Norm_L. It
also suggests values for AFR and SPK; these values are the set points for
AFR and SPK.

2 To accept the values in the dialog box, click OK.

This ensures that the majority of the breakpoints are where the model is
most curved. The table now has most values where the model changes

8-20



Calibrating a Feature

most. So, with the same number of breakpoints, the table is a better match
to the model.

For more information about calibrating the normalizers, see “About
Normalizers” in the CAGE documentation.

You can now calibrate the lookup tables; this is described in the next section.

Calibrating the Tables
The lookup tables currently have zero as the entry for each cell. This section
demonstrates how to fill the table T with values of torque using the torque
model, tq. To view the Table display, click the T node.
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This view has three panes: the table, the graph, and the comparison-of-results
pane.
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To fill the table with values of the model at the appropriate operating points,

1 Click Fill on the toolbar.

This opens the Feature Fill Wizard.

Observe the T table check box is selected, but you can also fill multiple
tables at once using the wizard. You can Fill from the top feature node or
from any table node in a feature. On the first screen you can set table
bounds to avoid extrapolating to infeasible values, choose whether to only
fill cells in the extrapolation mask, and choose whether to extrapolate
automatically.

Leave the settings at the defaults and click Next.
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2 On this screen you can see the tq model is selected to fill the table. Here
you could also set up constraints, for example using a boundary model to
constrain filling to table areas where data was collected, and you can link
other models or features to inputs.

Leave the settings at the defaults and click Next.

3 Here you can set variable values for optimizing over.
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By default the table’s normalizer breakpoints (here N and L) and the set
points of the other variables (A and SPK) are selected. You can select
different normalizers, and edit values in the Values edit box to optimize
over a range rather than at a single point. If you choose a range of values
the table will be filled using the average model value at each cell. You can
use the Interleave setting to add values between normalizer breakpoints to
optimize over a finer grid than the number of table cells.

Leave the settings at the defaults and click Next.

4 Click Fill Tables.

The graph shows the progress of the optimization. Select all the check
boxes and click Finish.

Plots are created of the filled table surface and the error between the table
values and the model.

5 Click OK.

The following view shows the table filled with values of the model.

8-26



Calibrating a Feature

The following comparison-of-results pane shows how good a fit the strategy
is to the model.

The model is represented by the multicolored surface and the strategy is
the blue surface.

The table T is now filled with optimized values compared to the model at
these operating points.

Now you must fill the tables F_A and F_SPK and their normalizers. The tables
are modifiers for AFR and the spark angle respectively. These steps are
described in the next section.
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Calibrating the Feature
A feature is a strategy (which is a collection of tables) and a model. Currently
the torque table, T, is filled with optimized values compared to the torque
model, tq. You must now calibrate the normalizers and tables for F_A and
F_SPK.

You could calibrate the normalizers and then the tables for F_A and F_SPK
in turn. However, CAGE enables you to calibrate the entire feature in one
procedure.

To view the Feature view following, click the New_Feature node.
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To calibrate all the tables and their normalizers,

1 Select Feature > Initialize (or use the Initialize toolbar button). The
Feature Initialization Options dialog appears.

8-29



8 Tutorial: Feature Calibration

2 Clear the Enable check boxes for Breakpoints of T, and Values of T, as
shown.

You have already optimized the breakpoints and table values for table T, so
you only want to initialize the other tables F_A and F_SPK.

Click OK.

3 Select Feature > Fill (or use the Fill toolbar button) to open the Feature
Fill Wizard. This time select only the F_A table to fill, and follow the steps
in the wizard to fill this table: click Next 3 times then click Fill Tables.
Select the F_A table node to view the results.
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4 Select F_SPK table node and click Fill . Repeat the wizard steps to fill
the table.

All three tables and normalizers are filled.

As the model and the feature are four-dimensional objects, it is difficult to
fully view a comparison between the feature and the model. A meaningful
comparison is shown in the lower half of the following figure (select the F_A
node in the branch display). The equation model = strategy is rearranged so
that the table is compared to the model and the remainder of the strategy.
CAGE runs an optimization routine over the feature to minimize the total
square error between the model and the feature.
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This display shows that the range of the normalizer for F_A is 11 to 17, the
range of AFR. The lower pane shows a comparison between the blue line of
the strategy and a red slice through the model, over the range of AFR.

This completes the calibration of the torque feature.

You can now export the calibration.
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Exporting Calibrations
To export your feature,

1 Select the New_Feature node in the branch display.

2 Select File > Export > Calibration > Selected Item.

3 Choose the type of file you want to save your calibrations as. For the
purposes of this tutorial, select Comma Separated Value (.csv).

4 Enter tutorial.csv as the file name and click Save.

This exports the calibration.

Note that when you choose to exportSelected Item rather than All Items,
what you export depends on which node is highlighted:

• Selecting a normalizer node outputs the values of the normalizer.

• Selecting a table node outputs the values of the table and its normalizers.

• Selecting a feature outputs the whole feature (all tables and normalizers).

• Selecting a branch node outputs all the features under the branch.

You have now completed the feature calibration tutorial.

8-33



8 Tutorial: Feature Calibration

8-34



9

Tutorial: Tradeoff
Calibration

This section includes the following topics:

What Is a Tradeoff Calibration?
(p. 9-2)

Introducing tradeoff calibrations.

Setting Up a Tradeoff Calibration
(p. 9-3)

Adding tables and displaying models
to set up a tradeoff calibration.

Performing the Tradeoff Calibration
(p. 9-8)

How to use tradeoff: calibrating
normalizers, setting value for other
variables, filling key operating
points, and filling the table by
extrapolation.
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What Is a Tradeoff Calibration?
A tradeoff calibration is the process of filling lookup tables by balancing
different objectives.

Typically there are many different and conflicting objectives. For example, a
calibrator might want to maximize torque while restricting nitrogen oxides
(NOX) emissions. It is not possible to achieve maximum torque and minimum
NOX together, but it is possible to trade off a slight reduction in torque for
a reduction of NOX emissions. Thus, a calibrator chooses the values of the
input variables that produce this slight loss in torque over the values that
produce the maximum value of torque.

This tutorial takes you through the various steps required for you to set up
this tradeoff, and then to calibrate the lookup table for it.
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Setting Up a Tradeoff Calibration

In this section...

“Creating a Tradeoff” on page 9-3

“Adding Tables to a Tradeoff Calibration” on page 9-5

“Displaying the Models” on page 9-6

Creating a Tradeoff
Start CAGE by typing

cage

at the MATLAB® prompt.

Before you can calibrate the lookup tables, you must set up the calibration.

1 Select File > Open Project (or the toolbar button) to choose the
tradeoffInit.cag file, found in the matlab\toolbox\mbc\mbctraining
directory, then click OK.

The tradeoffInit.cag project contains two models and all the variables
necessary for this tutorial. For information about how to set up models and
variables, see “Variables and Models” in the CAGE documentation.

2 To create a tradeoff calibration, select File > New > Tradeoff.

This takes you to the Tradeoff view. You need to add tables and display
models to the tradeoff, which are described step by step in the following
sections:

• “Adding Tables to a Tradeoff Calibration” on page 9-5.

• “Displaying the Models” on page 9-6 describes how you display the
models of torque and NOX emissions.
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Adding Tables to a Tradeoff Calibration
The models of torque and NOX are in the current session. You must add
the lookup table to calibrate.

Both models have five inputs. The inputs for the torque and NOX models are

• Exhaust gas recycling (EGR)

• Air/fuel ratio (AFR)

• Spark angle

• Speed

• Load

For this tutorial, you are interested in the spark angle over the range of
speed and load.

To generate a lookup table for the spark angle,

1 Click (Add New Table) in the toolbar. This opens the Table Setup dialog.

2 Enter Spark as the table Name.

3 Check that N is the X input and L is the Y input (these are selected
automatically as the first two variables in the current Variable Dictionary).
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4 Enter 10 as the size of the load axis (Rows).

5 Enter 13 as the size of the speed axis (Columns).

6 Click Select to open the dialog Select Filling Item.

Select the radio button Display variables, then select SPK to fill the
table and click OK.

7 Click OK to close the Table Setup dialog.

Before you can perform the calibration, you must display the models.

Displaying the Models
For this tutorial, you are comparing values of the torque and NOX models.
Thus, you need to display these models.
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To display both models,

• Click Add Model to Display List in the toolbar twice. This will move
both available models into the Display list.

• Alternatively, Shift-click to select both models in the Available Models
list and click to include both models in the current display. In this case
you want to include all available models. You can click to select particular
models in the list to display.

The Display Models pane following shows both models selected for display.

You can now calibrate the tradeoff.
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Performing the Tradeoff Calibration

In this section...

“Process Overview” on page 9-8

“Checking the Normalizers” on page 9-10

“Setting Values for Other Variables” on page 9-11

“Filling Key Operating Points” on page 9-13

“Filling the Table by Extrapolation” on page 9-17

“Exporting Calibrations” on page 9-19

Process Overview
You now fill the lookup table for spark angle by trading off gain in torque for
reduction in NOX emissions.

The method that you use to fill the lookup table is

• Obtain the maximum possible torque.

• Restrict NOX to below 250 g/hr at any operating point.

To perform the tradeoff calibration, follow the instructions in the next four
sections:

1 Check the normalizers.

2 Set values for the other variables, AFR and EGR.

3 Fill key operating points with values for spark angle.

4 Fill the table by extrapolation.

Once you have completed the calibration, you can export the calibration for
use in the electronic control unit.
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Checking the Normalizers
A normalizer is the axis of the lookup table (which is the collection of
breakpoints). The breakpoints of the normalizers are automatically spaced
over the ranges of speed and load. These define the operating points that
form the cells of the tradeoff table.

Expand the Tradeoff tree by clicking the plus sign in the display, so you can
see the Spark table and its normalizers Speed and Load. Click to highlight
either normalizer to see the normalizer view. A tradeoff calibration does not
compare the model and the table directly, so you cannot space the breakpoints
by reference to the model.
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Setting Values for Other Variables
At each operating point, you must fill the values of the spark table. Both of
the models depend on spark, AFR (labeled A, in the session), and EGR (labeled
E in the session). You could set the values for AFR and EGR individually for
each operating point in the table, but for simplicity you will set constant
values for these model inputs.

To set constant values of AFR and EGR for all operating points,

1 Click Variable Dictionary in the Data Objects pane.

2 Click A and edit the Set Point to 14.3, the stoichiometric constant, and
press Enter.

3 Click E and change the Set Point to 0 and press Enter.

You have set these values for every operating point in your tradeoff table.
You can now fill the spark angle lookup table. The process is described next.

4 Click Tradeoff in the Processes pane to return to the tradeoff view.

5 Highlight the Spark table node in the Tradeoff tree display.

6 In the lower pane, check that the value for A is 14.3, and the value for E is
0, as shown in the following example. You leave these values unchanged
for each operating point.

For each operating point you change the values of spark to trade off the torque
and NOX objectives; that is, you search for the best value of spark that gives
acceptable torque within the emissions constraint. The following example
illustrates the controls you use, and there are step-by-step instructions in
the following section.
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Filling Key Operating Points
You now fill the key operating points in the lookup table for spark angle.

The upper pane displays the lookup table, and the lower pane displays the
behavior of the torque and NOX emissions models with each variable.

The object is to maximize the torque and restrict NOX emissions to below
250 g/hr.

Determining the Value of Spark
At each operating point, the behavior of the model alters. The following
display shows the behavior of the models over the range of the input variables
at the operating point selected in the table, where speed (N) is 4500 and load
(L) is 0.5. You can show confidence intervals by selecting View > Display
Confidence Intervals.
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The top three graphs show how the torque model varies with the AFR (labeled
A), the spark angle (SPK), and the EGR (E), respectively. The lower panes show
how the NOX emissions model varies with these variables.

You are calibrating the Spark table, so the two spark (SPK) graphs are green,
indicating that these graphs are directly linked to the currently selected
lookup table.

1 Select the operating point N = 4500 and L = 0.5 in the lookup table.

2 Now try to find the spark angle that gives the maximum torque and
restricts NOX emissions to below 250 g/hr. You can change the value of
spark by clicking and dragging the orange line on the SPK graphs, or by
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typing values into the SPK edit box. You can change the values of any of
the other tradeoff variables in the same way, but as you have already set
constant values for A and E you should not change these. Try different
values of spark and look at the resulting values of the torque and NOX
models.

3 Click to select the top SPK - TQ_Model graph (TQ_Model row, SPK column).
When selected the graph is outlined as shown in the following example.

4 Now click ’Find maximum of output’ ( ) in the toolbar. This calculates
the value of spark that gives the maximum value of torque. The following
display shows the behavior of the two models when the spark angle is
26.4458, which gives maximum torque output.
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At this operating point, the maximum torque that is generated is 48.136
when the spark angle is 26.4989. However, the value of NOX is 348.968,
which is greater than the restriction of 250 g/hr. Clearly you have to look at
another value of spark angle.

5 Click and drag the orange bar to change to a lower value of spark. Notice
the change in the resulting values of the torque and NOX models.

6 Enter 21.5 as the value of SPK in the edit box at the bottom of the SPK
column.

The value of the NOX emissions model is now 249.154. This is within the
restriction, and the value of torque is 47.2478.

At this operating point, this value of 21.5 degrees is acceptable for the
spark angle lookup table, so you want to apply this point to your table.

7 Press Ctrl+T or click (Apply table filling values) in the toolbar to apply
that value to the spark table.

This automatically adds the selected value of spark to the table and turns
this cell yellow. It is blue when selected, yellow if you click elsewhere. Look
at the table legend to see what this means: yellow cells have been added to
the extrapolation mask, and the tick mark indicates you saved this input
value by applying it from the tradeoff. You can use the View menu to
choose whether to display the legend.

8 Now repeat this process of finding acceptable values of spark at four more
operating points listed in the table following. In each case,

• Select the cell in the spark table at the specified values of speed and load.

• Enter the value of spark given in the table (the spark angles listed all
satisfy the requirements).

• Press Ctrl+T or click (Apply table filling values) in the toolbar to
apply that value to the spark table.

Speed, N Load, L Spark Angle, SPK

2500 0.3 25.75

3000 0.8 10.7
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Speed, N Load, L Spark Angle, SPK

5000 0.7 8.2

6000 0.2 41.3

After you enter these key operating points, you can fill the table by
extrapolation. This is described in the next section.

Filling the Table by Extrapolation
When you have calibrated several key operating points, you can produce a
smooth extrapolation of these values across the whole table.

When you apply the value of the spark angle to the lookup table, the selected
cell is automatically added to the extrapolation mask. This is why the cell is
colored yellow. The extrapolation mask is the set of cells that are used as the
basis for filling the table by extrapolation.

Click in the toolbar to fill the table by extrapolation.

The lookup table is filled with values of spark angle.

The following figure displays the view after extrapolation over the table.
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Note Not all the points in the lookup table will necessarily fulfill the
requirements of maximizing torque and restricting the NOX emissions.

You could use these techniques to further improve the calibration and trade
off torque and NOX to find the best values for each cell in the spark table.

You can now export this calibration to file.
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Exporting Calibrations
To export your table and its normalizers,

1 Select the Spark node in the branch display.

2 Select File > Export > Calibration.

3 Choose the file type you want for your calibration. For the purposes of this
tutorial, select Comma Separated Value (.csv).

4 Enter tradeoff.csv as the file name and click Save.

This exports the spark angle table and the normalizers, Speed and Load.

You have now completed the tradeoff calibration tutorial.
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Tutorial: Data Sets

This section includes the following topics:

Setting Up the Data Set (p. 10-2) You can use the Data Sets view in
CAGE to compare features, tables,
and models with experimental data.
This tutorial takes you through the
basic steps required to compare a
completed feature calibration to a set
of experimental data. This section
covers how to set up a new data set,
open an existing calibration, import
experimental data into a data set
and add data set items.

Comparing the Items in a Data Set
(p. 10-8)

How to use to views to investigate
data sets, viewing as tables or plots,
displaying errors and using color in
the display.

Reassigning Variables (p. 10-16) How to alter the data set by changing
which variables are used for project
expressions. You can also use
data sets to fill lookup tables from
experimental data. For information,
see Chapter 11, “Tutorial: Filling
Tables from Data”.
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Setting Up the Data Set

In this section...

“Tutorial Overview” on page 10-2

“Opening an Existing Calibration” on page 10-3

“Importing Experimental Data into a Data Set” on page 10-3

“Adding an Item to a Data Set” on page 10-6

Tutorial Overview
You can use the Data Sets view in CAGE to compare features, tables, and
models with experimental data. You can use data sets to plot the features,
tables, etc., as tabular values or as plots on a graph.

Data sets enable you to view the data at a set of operating points. You can
determine the set of operating points yourself, using Build Grid. Alternatively,
you can import a set of experimental data taken at a series of operating points.
These operating points are not the same as the breakpoints of your tables.

This tutorial takes you through the basic steps required to compare a
completed feature calibration to a set of experimental data.

Start CAGE by typing

cage

at the MATLAB® prompt.

To set up the data set tutorial, you need to

1 Open an existing calibration.

2 Import the experimental data.

3 Add the Torque feature to the data set.

10-2



Setting Up the Data Set

Your data set contains all the input factors and output factors required. As
the imported data contains various operating points, this information is also
included in the data set.

The next sections describe these processes in more detail.

Opening an Existing Calibration
For this tutorial, use the file datasettut.cag, found in the
matlab\toolbox\mbc\mbctraining directory.

To open this file,

1 Select File > Open Project.

2 In the file browser, select datasettut.cag and click Open.

This opens a file that contains a complete calibrated feature with its
associated models and variables. This particular feature is a torque
calibration, using a torque table (labeled T1) and modifiers for spark
(labeled T2) and air/fuel ratio (labeled T3).

3 Select File > New > Data Set to add a new data set to your session.

This automatically switches you to the Factor Information pane of the
data set display.

Importing Experimental Data into a Data Set
To import data into a data set,

1 Select File > Import > Data.

2 In the file browser, select meas_tq_data.xls from the mbctraining
directory, and click Open.

This set of data includes six columns of data, the test cell settings for
engine speed (RPM), and the measured values of torque (tqmeas), engine
speed (nmeas), air/fuel ratio (afrmeas), spark angle (spkmeas), and load
(loadmeas).
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3 The Data Set Import Wizard asks which of the columns of data you would
like to import. Click Next to import them all.

The following screen asks you to associate variables in your project with
data columns in the data.

4 Highlight afr in the Project Assignments column and afrmeas in the
Data Column, then click the assign button, shown.

5 Repeat this to associate load with loadmeas, n with RPM, and spk with
spkmeas. The dialog box should be the same as shown.
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6 Click Finish to close the dialog box.

Note If you need to reassign any inputs after closing this dialog you can

click in the toolbar or select Data > Assign.
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Adding an Item to a Data Set
To add the Torque feature to the data set,

1 Highlight the Torque feature in the lower list of Project Expressions.

2 Select Data > Factors > Add to Data Set.

This adds two objects to the data set: Torque: Model and Torque:
Strategy. These two objects make up the Torque feature.

• Torque: Model is the model used as a reference point to calibrate the
feature.

• Torque: Strategy is the values of the feature at these operating points.

When these steps are complete, the list of factors includes four input factors
and four output factors, as shown.
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Comparing the Items in a Data Set

In this section...

“Viewing the Data Set as a Table” on page 10-8

“Viewing the Data Set as a Plot” on page 10-10

“Displaying the Error” on page 10-11

“Coloring the Display” on page 10-13

Viewing the Data Set as a Table
By viewing the data set, you can compare experimental data with calibrations
or models in your project.

Click in the toolbar to view the data set as a table of values.

In the table, the input cells are white and the output cells are grey. Select
the Torque: Strategy column header to see the view shown. The selected
column turns blue and the column headers of the strategy’s inputs (n, load,
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afr and spk) turn cream. Column headers are always highlighted in this way
when they are associated with the currently selected column (such as model
inputs, strategy inputs or linked columns).

In addition to viewing the columns, you can use data sets to create a column
that shows the difference between two columns:

1 Select the tqmeas and Torque: Strategy columns by using Ctrl+click.

2 Select Create Error from the right-click menu on either column header.

This creates another column that is the difference between tqmeas and
Torque: Strategy. Note that all the columns that are inputs to this new
column have highlighted headers.

The error column is simply the difference between tqmeas and Torque:
Strategy. This provides a simple way of comparing the feature and the
measured data.
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Viewing the Data Set as a Plot

1 Click or select View > Plot to view the data set as a plot.

The lower pane lists all the output expressions in the data set and in the
project.

2 Use Ctrl+click to select tqmeas and Torque: Strategy from the lower
list.

3 Change the x-axis factor to n from the drop-down menu.

This displays the calibrated values of torque from the feature, and the
measured values of torque from the experimental data, against the test
cell settings for engine speed.

Clearly there is some discrepancy between the two.
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Displaying the Error
View the error between the calibrated and measured values of torque.
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1 Select tqmeas_minus_Torque from the lower list (Output Expressions).

2 For the y-axis factor, select Absolute Relative Error (tqmeas -
Torque) from the drop-down menu.

As you can see, there seems to be no particular correlation between engine
speed and the error in the calibration.

Coloring the Display

1 Select Color by Value from the right-click menu on the graph.

2 From the Color by drop-down menu, select load.

In this display, you can see that some of the low values of load display a high
error.
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Limiting the Range of the Colors
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To view the colors in more detail, you can limit the range of the colors:

1 Select the Limit range box (or you could right-click the graph and select
Restrict Color to Limits).

2 Set the minimum value of the color range to be as low as possible by
dragging the minimum value down.

3 Set the maximum value of the color range to be around 0.4.
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As the low values of load are causing large errors, it would be wise to
reexamine the calibration, particularly at small values of load.
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Reassigning Variables
Instead of using the test cell settings for the engine speed (RPM), you might
want to use the measured values of engine speed (nmeas). So you have to
reassign the variable n to nmeas.

To reassign n,

1 Click or select Data > Assign.

2 In the dialog that appears, select n from the Project Assignments pane
and nmeas from the Data Columns pane.

3 Click the assign button.
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You can now compare your calibration with your experimental data again,
using the techniques described.

You have now completed the data sets tutorial.
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Tutorial: Filling Tables
from Data

This section includes the following topics:

Setting Up a Table and Experimental
Data (p. 11-2)

How to set up a new table and import
experimental data.

Filling the Table from the
Experimental Data (p. 11-9)

How to fill a table from experimental
data.

Selecting Regions of the Data
(p. 11-13)

How to use regions to include only
the data you want to use.

Exporting the Calibration (p. 11-15) How to export your calibration.
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Setting Up a Table and Experimental Data

In this section...

“Tutorial Overview” on page 11-2

“Adding Variables” on page 11-3

“Adding a New Table” on page 11-4

“Importing Experimental Data” on page 11-6

Tutorial Overview
If you are considering a straightforward strategy, you might want to fill
tables directly from experimental data. For example, a simple torque strategy
fills a lookup table with values of torque over a range of speed and relative
air charge, or load. You can use CAGE to fill this strategy (which is a set of
tables) by referring to a set of experimental data. You can also fill tables with
the output of optimizations.

This tutorial takes you through the steps of calibrating a lookup table for
torque, based on experimental data.

• This section describes the steps required to set up CAGE in order to
calibrate a table by reference to a set of data.

• “Filling the Table from the Experimental Data” on page 11-9 describes the
process of filling the lookup table.

• “Selecting Regions of the Data” on page 11-13 describes how you can select
some of the data for inclusion when you fill the table.

• “Exporting the Calibration” on page 11-15 describes how to export your
completed calibration.

Start CAGE by typing

cage

at the MATLAB® prompt.

If you already have a CAGE session open, select File > New Project.
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First you will set up a blank table ready for filling using experimental data or
optimization output.

The steps that you need to follow to set up the CAGE session are

1 Add the variables for speed and load by importing a variable dictionary.

2 Add a new table to your session.

3 Import your experimental data.

The next sections describe each of these processes in detail.

Adding Variables
Before you can add tables to your session, you must add variables to associate
with the normalizers or axes.

To add a variable dictionary,

1 Select File > Import > Variable Dictionary.

2 Select table_filling_tutorial.xml from the
matlab\toolbox\mbc\mbctraining directory.

This loads a variable dictionary into your session. The variable dictionary
includes the following:

• N, the engine speed

• L, the relative air charge

• A, the air/fuel ratio (AFR)

• stoich, the stoichiometric constant

You can now add a table to your session.
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Adding a New Table
You must add a table to fill.

To add a new table,

1 Select File > New > 2D table.

This opens a dialog box that asks you to specify the variable names for the
normalizers. As you can see in the dialog controls, accepting the defaults
will create a table with ten rows and ten columns with an initial value
of 0 in each cell.

2 Change the number of columns to 7.

3 Select L as the variable for normalizer Y and N as the variable for
normalizer X, then click OK.

Note In CAGE, a 2-D table is defined as a table with two inputs.

CAGE takes you to the Tables view, where you can see the following.
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Inspecting the Values of the Normalizers
CAGE has automatically initialized the normalizers by spacing the
breakpoints evenly across the range of values for the engine speed (N) and
load (L). The variable ranges are found in the variable dictionary. Switch to
the Normalizer view to inspect the normalizers.

Expand the table branch by clicking , and select NNormalizer as shown.
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This displays the two normalizers for the table.

You have an empty table with breakpoints over the ranges of the engine speed
and load, which you can fill with values based on experimental data.

Importing Experimental Data
To fill a table with values based on experimental data, you must add the data
to your session. If you want to fill a table with the output of an optimization,
the output appears automatically in the Data Sets view as a new data set
called Exported_Optimization_Data when you select the Export to Data Set
toolbar button. For this tutorial you need to import some experimental data.

CAGE uses the Data Sets view to store grids of data. Thus, you need to
add a data set to your session as well.

Select File > New > Data Set to add a data set to your session. This changes
the view to the Data Set view.

You can now import experimental data into the data set:

1 Select File > Import > Data.

2 In the file browser, select meas_tq_data.csv from the
matlab\toolbox\mbc\mbctraining directory and click Open.

This set of data includes six columns of data: the test cell settings for
engine speed (RPM), and the measured values of torque (tqmeas), engine
speed (nmeas), air/fuel ratio (afrmeas), spark angle (spkmeas), and load
(loadmeas).
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3 This opens the Data Set Import Wizard. The first screen asks which of the
columns of data you want to import. Click Next to import them all.

The following screen asks you to associate variables in your project with
data columns in the data.

4 Highlight N in the Project Assignments column and nmeas in the Data
Column, then click the assign button, shown.

5 Repeat this to associate L with loadmeas. The dialog box should be the
same as the following.
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6 Click Finish to close the dialog box.

You now have an empty table and some experimental data in your session.
You are ready to fill the table with values based on this data.
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Filling the Table from the Experimental Data
You have an empty table and the experimental data in your session. You can
now fill the table with values based on your data.

The data that you have imported is a series of measured values of torque
at a selection of different operating points. These operating points do not
correspond to the values of the breakpoints that you have specified. The
lookup table has a range of engine speed from 500 revolutions per minute
(rpm) to 3500 rpm. The range of the experimental data is far greater.

CAGE extrapolates the values of the experimental data over the range of your
table. Then it fills the table by selecting the torque values of the extrapolation
at your breakpoints.

To fill the table with values based on the experimental data,

1 To view the Table Filler display, click (Fill Table From Data Set) in the
toolbar in the Data Sets view; or select View > Table Filler.

You can use this display to specify the table you want to fill and the factor
you want to use to fill it.

2 In the lower pane, select New_2D_Table from the Table to fill list.

3 Select tqmeas from the Factor to fill table list. This is the data that you
want to use to fill the table.

4 Select N from the x-axis factor list and L from the y-axis factor list. Your
session should be similar to the following display.
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The upper pane displays the breakpoints of your table as crosses and the
operating points where there is data as blue dots. Data sets display the

11-10



Filling the Table from the Experimental Data

points in the experimental data, not the values at the breakpoints. You can
inspect the spread of the data compared to the breakpoints of your table
before you fill the table.

5 To view the table after it is filled, ensure that the Show table history
after fill box, at the bottom left, is selected.

6 To fill the table with values of tqmeas extrapolated over the range of the
normalizers, click Fill Table.

This opens the History dialog box, shown.
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7 Click Close to close the History dialog box and return to the Table Filler
display.

8 To view the graph of your table, as shown, select Data > Plot > Surface.

This display shows the table filled with the experimental points overlaid as
purple dots.

The table has been calibrated by extrapolating over the values of your data
and filling the values that the data predicts at your breakpoints.

Notice that the range of the table is smaller than the range of the data, as the
table only has a range from 500 rpm to 3500 rpm.

The data outside the range of the table affects the values that the table is filled
with. You can exclude the points outside the range of the table so that only
points in the range that you are interested in affect the values in the table.
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Selecting Regions of the Data
You can ignore points in the data set when you fill your lookup table.

For example, in this tutorial the experimental data ranges over values that
are not included in the lookup table. You want to ignore the values of engine
speed that are greater than the range of the table.

To ignore points in the data set,

1 Select Data > Plot > Data Set. This returns you to the view of where the
breakpoints lie in relation to the experimental data.

2 To define the region that you want to include, left-click and drag the plot.
Highlight all the points that are included in your table range, as shown.

3 To fill the table based on an extrapolation over these data points only, click
Fill Table. This opens the History display again.

4 In the History display, select version 2 and 3, using Ctrl+click. The
following display shows a comparison between the table filled with two
different extrapolations.
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5 Click Close to close the History viewer.

6 Select Data > Plot > Surface to view the surface again.

The display of the surface now shows the table filled only by reference to the
data points that are included in the range of the table.

You have filled a lookup table with values taken from experimental data.
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Exporting the Calibration
To export the calibration,

1 To highlight the table that you want to export, you must first click Tables,
shown.

2 Highlight the New_2D_Table.

3 Select File > Export > Calibration > Selected Item.

4 Choose the type of file you want to save your calibrations as. For the
purposes of this tutorial, select Comma Separated Value (.csv).

5 Enter table_filling_tutorial.csv as the file name and click Save.

This exports the calibration.

You have now completed this tutorial.
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Tutorial: Optimization and
Automated Tradeoff

This section includes the following topics:

Tutorial Overview (p. 12-3) Introducing the tutorial
optimizations and how to set
up your session by importing models
and setting up an operating point
set.

Single-Objective Optimization
(p. 12-6)

How to set up and run a simple
single-objective optimization,
examine and export your results,
and use those results to fill a table.

Multiobjective Optimization
(p. 12-20)

How to set up and run a
multiobjective optimization,
and use the output views to select
the best solutions to export.

Sum Optimization (p. 12-34) How to set up a sum optimization
so you can assign weights to more
significant operating points, for
example to constrain emissions over
a whole drive cycle.

Automated Tradeoff (p. 12-41) How to use your optimizations for
automated tradeoff.
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Worked Example Optimization
(p. 12-44)

How to use the Worked Example. We
provide this to illustrate modifying
the template to create your own
user-defined optimizations.

Creating an Optimization from Your
Own Algorithm (p. 12-51)

A detailed walk-through of the
steps involved in incorporating your
own algorithm into an optimization
function for use in CAGE.
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Tutorial Overview

In this section...

“Tutorial Problem Definitions” on page 12-3

“The Optimization View” on page 12-3

“Setting Up Your Optimization Session” on page 12-5

Tutorial Problem Definitions
In this tutorial you will use optimization to find solutions to the following
problems:

• A single-objective optimization to find maximum values of torque, subject to
a constraint to keep NOX emissions below a specified level. You will export
the output and use it to fill a table. See “Single-Objective Optimization”
on page 12-6.

• A multiobjective optimization to maximize torque and minimize NOX
emissions. See “Multiobjective Optimization” on page 12-20.

• A sum optimization to maximize torque while minimizing NOX, weighted to
give more importance to idle speed. See “Sum Optimization” on page 12-34.

• Using any of your optimizations to run an automated tradeoff. Once you
have set up an optimization you can apply it to a tradeoff. See “Automated
Tradeoff” on page 12-41.

The Optimization View
You can use the Optimization view to set up, run, view, and export
optimizations. You must also set up optimizations here in order to use them
for automated tradeoff.

Start the CAGE Browser part of the Model-Based Calibration Toolbox™
product by typing

cage

at the MATLAB® prompt.
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To reach the Optimization view, click the Optimization button in the
Processes pane.

When you first open the Optimization view both panes are blank until
you create an optimization. After you set up your optimizations, the left
Optimization pane shows a tree hierarchy of your optimizations, and the
right hand panes display details of the optimization selected in the tree, as
with other CAGE processes.

As for other CAGE processes, you must set up your session for an optimization.
For any optimization, you need one or more models. You can run an
optimization at a single point, or you can supply a set of points to optimize.
In this case you also need to set up this set of points using the Data Sets
view. The steps required are as follows:

1 Import a model or models.

2 Set up a new optimization.

3 Define an operating point set if required.

The following tutorial guides you through this process to evaluate this
optimization problem:

MaxTQ (SPK, N, L)

That is, find the maximum of the torque model (TQ) as a function of spark
(SPK), engine speed (N), and load (L). You will use the NOXFLOW model to
constrain these optimization problems.
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Setting Up Your Optimization Session
Before you can set up the optimization, you must set up your session.

1 Select File > Open Project (or the toolbar button) to choose the
tradeoffInit.cag file, found in the matlab\toolbox\mbc\mbctraining
directory, then click OK.

The tradeoffInit.cag project contains two models and all the variables
necessary for this tutorial. For more information about how to set up models
and variables, see “Variables and Models” in the CAGE documentation.

2 Select the Models view by clicking the Models button in the Data Objects
pane.

Observe that the project you have opened contains two models: TQ_Model
and NOXFLOW_Model. In this tutorial you use these models to optimize
torque values subject to emissions constraints.

3 To view the items in the Variable Dictionary, click the Variable Dictionary
button in the Data Objects pane.

The Variable Dictionary view appears, displaying the variables,
constants, and formulas in the current project. The project already has
the relevant variables defined, so you do not need to import a variable
dictionary. Note that the variables have ranges and set points defined.
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Single-Objective Optimization

In this section...

“Process Overview” on page 12-6

“Using the Optimization Wizard” on page 12-6

“Setting Objectives, Constraints, and Operating Points” on page 12-9

“Running the Optimization” on page 12-14

“Using Optimization Results to Fill Tables” on page 12-15

“Using a Custom Fill Routine to Fill Tables” on page 12-18

Process Overview
The following sections describe these stages:

1 Using the Optimization Wizard to choose

• Your optimization algorithm

• How many objectives and constraints

• What free variables to use

2 Using the Optimization view to choose

• A model for your objective

• A model, type, and value for your constraint

• An operating point set for your optimization

3 Running the optimization, examining the output, exporting to a data set,
and using the output to fill a table

Using the Optimization Wizard
To create a new optimization,

1 Select File > New > Optimization.

This opens the Optimization Wizard.
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2 foptcon is selected by default, and this is the optimization algorithm
you will use for this example. Note that this algorithm specifies a single
objective in the Objectives column. Click Next.

3 On the next screen, set the number of constraints to 1, as shown.
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Leave the number of free variables at 1 (spark will be the free variable).
Click Next.

4 On the next screen, choose spark as your free variable for this optimization
by clicking SPK in the list on the right, then click the button to match it up
with FreeVariable1, as shown. Click Finish.

A new branch named Optimization appears in the Optimization tree. Your
CAGE browser should look like the following example. In the Optimization
Information pane you can see listed the algorithm name mbcOSfmincon,
free variable SPK, and the description Single objective optimization
subject to constraints. In the Objectives and Constraints panes there
are status messages informing you that you need to specify a model for an
objective, and valid constraint settings.
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Setting Objectives, Constraints, and Operating Points

1 Double-click Objective in the Objectives pane.

The Edit Objective dialog appears.
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2 Click to select TQ_Model and select Maximize from the radio buttons on
the right. Click OK.

You return to the CAGE Browser Optimization view. The Description
TQ_Model(SPK,L,N,A,E) appears in the Objectives pane.

3 Double-click Model in the Constraints pane.

The Edit Constraint dialog appears.
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4 Leave the Constraint type drop-down menu at the default, Model, and
edit the Constraint name to NOX.

5 Select NOXFLOW_Model from the Input model list, and enter 250 in the
Constant edit box as the maximum value for the constraint, as shown
above, and press Enter. Make sure the inequality is <= and the Constraint
Description reads NOXFLOW_Model(SPK, L, N, A, E) <=250. Click OK.

You return to the CAGE Browser Optimization view. Notice that the
Description NOXFLOW_Model(SPK, L, N, A, E) <= 250 appears in the
Constraints pane.

Note that the toolbar button Run Optimization ( ) is now enabled,
because your optimization setup has provided enough information to start
an optimization.

6 You can use the Input Variable Values panes to define a set of operating
points for the optimization. Note that you do not have to have an operating
point set; if you do not, the optimization will run at a single point of your
choosing (the set points of variables is the default).
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Running the optimization requires the selected models to be evaluated
(many times over) and hence values are required for all the model input
factors (L, N, A, E, and SPK). The defaults of the fixed variables (L, N, A, E) are
their set points, as shown in the Fixed Variables pane. You have chosen
SPK as a free variable, so the optimization will choose different values for
SPK in trying to find the best. The default initial value for a free variable is
the set point, as shown in the Free Variables pane.

To define the set of operating points for the optimization,

a In the Input Variable Values pane, increase the Number of runs
to 6. Notice 6 rows appear in both fixed and free variables panes, all
containing the default set point values of each variable.

b Enter, or copy and paste, these values into the N column of the Fixed
Variables pane:

N

1000

1000

3000

3000

6000

6000

c Enter, or copy and paste, these values into the L column of the Fixed
Variables pane:

L

0.1

0.8

0.1

0.8

0.1

0.8

The Fixed Variables pane should look as shown.
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Leave the other fixed variables and the free variable values at the
defaults. If you wished to restrict the range of the free variables, you
could select Optimization > Edit Free Variable Ranges. The default
is the range of the variable as defined in the Variable Dictionary. For this
example, leave the default.

7 Your CAGE Browser should now look like the following example, with an
objective, constraint, and set of operating points. The optimization is ready
to run.
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Running the Optimization

1 Click Run Optimization ( ) in the toolbar.

The optimization runs, showing progress messages as each point is
evaluated until the optimization is complete. On completion of the
optimization, a new node appears in the Optimization tree.

2 The view switches to the new node Optimization_Output where you can
view the optimization results.

This single-objective optimization produces one best solution for each point
in the operating point set. Click the cells of the table, or the points in the
Results Surface, to view solutions at those operating points.
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3 The optimization output view retains a memory of previous layout. If you
have not used these views before, try the buttons and right-click context
menus in the view title bars to add constraint graphs to examine your
results.

For more information, see “Analyzing Point-by-Point Optimization Output” in
the CAGE User’s Guide documentation.

Using Optimization Results to Fill Tables
As an example, to use these optimization results to fill a table, first create a
new table as follows:
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1 Build a SPK table in N and L. Select File > New > 2-D Table.

2 Leave 10 in the Rows and Columns edit boxes and 0 in the Initial Value
edit box.

3 Use the drop-down menus to select L and N for the Y and X inputs.

4 Rename the table to SPK_Table.

5 Click OK. Your CAGE browser switches to the Tables view. CAGE has
automatically initialized the normalizers to space breakpoints evenly over
the ranges of N and L.

There are two methods for filling tables with optimization results.

1 Click the Optimization button in the Processes pane to return to the
Optimization view

2 Click the plus to expand the Optimization node, and select the
Optimization_Output node.

3 Select Solution > Fill Tables (or the toolbar button Fill tables using
optimal settings).

The Table Filling wizard appears.

4 Select the SPK_Table table and click the button to add it to the list of tables
to be filled. Click Next.

5 Select the SPK_Table table, and double-click SPK in the list of optimization
results to select it to fill the table, as shown.
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6 Click Finish.

You will see a dialog reporting successful table filling. Switch to the Tables
view to examine the new spark table.

The other method of filling tables with optimization output uses Data Sets.

1 From the Optimization_Output optimization output node, click Export to

Data Set ( ) in the toolbar (or select Solution > Export to Data Set).
Click OK in the Export to Data Set dialog box to accept the defaults.

2 Go to the Data Sets view (click the Data Sets button in the Data Objects
pane) to see that the table of optimization results is contained in the new
data set New_Dataset.

You can now use this data set (or any optimization results) to fill tables, as
you can with any data set.

3 Select the data set and click (Fill Table From Data Set) in the toolbar.
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4 Clear the check box at the bottom to Show table history after fill.

5 Choose to fill the spark table with the SPK optimization output by selecting
them in the two lists, then click the button Fill Table at the bottom right.

6 Right-click the display and select Surface to see the filled table surface
and the optimization output spark values.

See also Chapter 11, “Tutorial: Filling Tables from Data” for more details on
using data sets to fill tables.

In the next section you will use a custom fill routine to fill the table.

Using a Custom Fill Routine to Fill Tables
It can be useful to create your own custom fill function to fill tables from the
results of an optimization. Some example situations are:

• You have your own smoothing strategy for certain regions of your look-up
tables

• Implementation of an alternative method to the two fill methods supplied

• You want to produce some customized output

You can use a custom fill routine to fill the SPK_Table table from the
optimization results.

1 Create a custom fill function. For this example, you can use the supplied
example, griddataTableFill.m, which can be found in the mbctraining
directory. Copy griddataTableFill.m to a directory away from the
MATLAB® root directory, and make sure this directory is on the MATLAB
path (or change the current directory to the location where you copied the
file).

2 At the optimization output node, select Solution > Fill Tables.

3 The wizard retains a memory so the SPK_Table table is already selected to
be filled. Click Next.

4 Similarly, SPK is already selected from the list of optimization results
to fill the table.
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5 Select Custom from the Fill Method drop down menu. Use the file selector,
or enter the name of the fill function you wish to use to fill your tables.
In this case, select or enter griddataTableFill. Note that this function
must be on the MATLAB path.

6 Click Finish to fill the SPK_Table table.

In the next section you will add a multiobjective optimization to this project.
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Multiobjective Optimization

In this section...

“Setting Up and Running the Multiobjective Optimization” on page 12-20

“Optimization Output View” on page 12-24

“Selecting Best Solutions” on page 12-30

Setting Up and Running the Multiobjective
Optimization
In this optimization you will construct a search for values of spark that
maximize values of torque while minimizing values of NOX at a series of
(L, N, A, E) points.

1 Select File > New > Optimization.

This opens the Optimization Wizard.

2 Click to select NBI in the list. This is the optimization algorithm you
will use for this example. Note that this algorithm specifies two or more
objectives in the Objectives column. Click Next.

3 On the next screen, set the number of constraints to 1. Leave the number
of free variables at 1 (this will be spark) and objectives at 2 (these will be
the TQ and NOXFLOW models). Click Next.

4 On the next screen, select SPK as your free variable and click the button
to match it up to FreeVariable1. Click Next.

5 Here you must select models for your objectives.
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a Select TQ_Model and click the button to match it up to Objective1, then
click the Maximize radio button. Check Maximize appears next the
TQ_Model as shown.

b Select Objective2, then NOXFLOW_Model and click the button to match
them up. Leave the NOXFLOW_Model objective set to Minimize.

Note that this stage was skipped for the first simple example
(single-objective optimization) by clicking Finish on the previous screen.

• You can set up objectives, constraints, and operating point sets in the
Optimization Wizard. You can change any of these settings later.

• You can also click Finish on any of these screens of the wizard and set
up any or all of these later from the main Optimization view in the
CAGE Browser, as in the first tutorial example.

Click Next.

6 On the next screen you can set up a constraint.
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Select the NOXFLOW_Model and click the button to match it to Constraint1.
Enter 250 in the edit box and press Enter. Leave the operator at <= to
constrain the NOXFLOW_Model to a maximum of 250. Click Finish.

A new node, Optimization_1, appears in the Optimization tree. Your
CAGE browser should look like the following example. Your optimization
has objectives and a constraint set up and is ready to run. However unless
you edit the fixed variable values it will run at a single point, the set point
of the variables.
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7 In the Input Variable Values pane, increase the Number of runs to
6. Notice 6 rows appear in both fixed and free variable values panes, all
containing the default set point values of each variable.

8 Select Optimization > Import From Output. The Import From Output
dialog box appears.

a Select the previous single objective optimization node,
Optimization_Output, in the top list to import values from this
optimization.

b Clear the check boxes for SPK, A, and E, to leave only N and L selected
for import, and click OK.

9 View these values in the N and L columns in the Fixed Variables pane.
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10 Click Run Optimization ( ) in the toolbar.

The optimization runs, showing progress messages as each point
is evaluated until the optimization is complete. A new node,
Optimization_1_Output, appears under Optimization_1 in the
Optimization tree.

Optimization Output View
The view switches to the Optimization_1_Output node in the Optimization
tree where you can examine the optimization output.

The toolbar buttons determine which view is displayed. The default is the

Solution Slice ( ). The Solution Slice shows one solution at all operating
points. That is, you can see a table (and surface plot) of all operating points at
once, and you can scroll through the solutions using the Solution buttons at
the top. At the start all 6 operating points show solution 1. Change solution
to 2, and you see the second solution for all 6 operating points, and so on.
As this is a multiobjective optimization, there are several solutions for each
operating point.

Change solution number to 10.
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The graphs show the objective functions at the currently selected operating
point (highlighted in the table and Results Surface view), with the solution
value shown in red.

Note that before you run an optimization you can specify how many solutions
you want the optimization to find, using the Set Up and Run Optimization
toolbar button.

1 For an example point, click in the table to select operating point 6, and
enter 10 in the Solution edit box. Observe the constraint you applied in
the objective function graphs, as shown in the example. Areas in yellow
are excluded by constraints. Similarly, if you use a boundary constraint
model exported from the Model Browser as a constraint, areas outside the
boundary appear in optimization graphs as yellow areas. Note that for some
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problems the optimization might fail to find a value within the constraints
(depending on the constraints and starting values) in which case you might
need to run the optimization again to find valid solutions. Choosing more
suitable starting values and changing your settings to make constraints
less stringent can help in these cases. See “Analyzing Point-by-Point
Optimization Output” in the CAGE User’s Guide documentation.

2 Right-click the Objective Graphs view and select Split View > Pareto
Graphs.
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The view splits to show both objective and pareto graphs. You can
right-click and select Graph Size to adjust how many plots can be
displayed. In the Pareto Graphs view you can see all solutions found by
the optimization at the selected operating point (the selected solution is
highlighted in red). Try clicking different points in the pareto graph to see
the different solutions in the objective graphs.

3 Click Pareto Slice ( ) in the toolbar. This changes the table to display all
solutions at a single operating point. You can scroll through the operating
points using the Run buttons at the top. The pareto graphs always show
the currently selected solution in red. Click in the table or the graph to
select different solutions.

Recall that the first example, a single-objective optimization, produced a
single solution at each point, so you could not view the Pareto Slice. The
Pareto Slice is useful to show you the set of optimal tradeoff solutions when
using multiobjective optimizations, as in this case. You can use these plots
to help you select the best solution for each operating point. As you can see,
this example trades off NOX emissions for torque, so it is a judgment call to
choose the best depending on your priorities. You will select best solutions
in a later section, “Selecting Best Solutions” on page 12-30.
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4 Click Weighted Pareto Slice ( ) in the toolbar.

This table view displays a weighted sum objective output across all
operating points for each solution.

The value in the NOXFLOW_Model column in the first row shows the weighted
sum of the solution 1 values of NOX across all 6 operating points. The
second row shows the weighted sum of solution 2 NOX values across all 6
operating points, and so on. This can be useful, for example, for evaluating
total emissions across a drive cycle. The default weights are unity (1) for
each operating point.

5 You can alter these weights by clicking Edit Pareto Weights ( ) in the
toolbar. The Pareto Weights Editor appears.
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Here you can select models, and select weights for any operating point, by
clicking and editing, as shown in the example above. The same weights are
applied to each solution to calculate the weighted sums. Click OK to apply
new weights, and the weighted sums are recalculated.

You can also specify weights with a MATLAB® vector or any column in
your optimization output by selecting the other radio buttons. If you select
Output column you can also specify which solution; for example you could
choose to use the values of spark from solution 5 at each operating point as
weights. Click Table Entry again, and you can then view and edit these
new values.

Note Weights applied in the Weighted Pareto Slice do not alter the results
of your optimization as seen in other views. You can use the weighted sums
to investigate your results only. You need to perform a sum optimization if
you want to optimize using weighted operating points.
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Selecting Best Solutions
In a multiobjective optimization, there is more than one possible optimal
solution at each operating point. You can use the Selected Solution Slice
to collect and export those solutions you have decided are optimal at each
operating point.

Once you have enabled the Selected Solution Slice, you can use the plots in
the Pareto Slice and Solution Slice to help you select best solutions for each
operating point. These solutions are saved in the Selected Solution Slice.
You can then export your chosen optimization output for each point from the
Selected Solution Slice, or use your chosen optimization output to fill tables.

1 In order to choose a single solution at each operating point, you need
to enable the Selected Solution Slice. Select Solution > Selected
Solution > Initialize.

A dialog called Initialize Selected Solution appears. Click OK.

The default initializes the first solution for each operating point as the
selected solution.

2 Click the Selected Solution Slice button ( ) which is now enabled in the
toolbar. Observe that the Solution number at the top is not editable, and
is initially solution 1 for each operating point you click in the table. You
must select the solutions you want using the Pareto Slice and Solution Slice
to decide which solution is best for each point.
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3 Return to the Pareto Slice and select a solution for run 6. Enter 6 in the
Run edit box, and click in the table or in the pareto graphs to select a
solution. An example is shown with solution 7 highlighted. To select this
solution as best, do one of the following:

• Click Select Solution ( ) in the toolbar.

• Select the menu item Solution > Selected Solution > Select Current
Solution.
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4 If you return to the Selected Solution Slice you can now see that solution 7
is now present for operating point 6, while all the other operating points
remain at the initial solution 1. This view collects all your selected solutions
together in one place. For example, you might want to select solution 7 for
the first operating point, and solution 6 best for the second, and so on.

5 In order to use your optimization output to fill tables, you should repeat this
process to select a suitable solution for all operating points. Then use the
Table Filling From Optimization Results Wizard (Solution > Fill Tables)
as before — the table is filled with your selected solution for each run.

Alternatively you could fill from a data set containing the selected

solutions. To do this, click Export to Data Set ( ) and click OK in the
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dialog box. Go to the Data Sets view (click Data Sets in the Data Objects
pane) to see that the table of optimization results is contained in a new
data set. You could use these optimization results to fill tables. Both these
table-filling methods are described in “Using Optimization Results to Fill
Tables” on page 12-15.

Note that the table in the current view is exported to the data set. If you
want to export your selected best solutions for each operating point, make
sure you display the Selected Solution Slice before exporting the data. If
you export from the Pareto Slice, the new data set contains all solutions
at the single currently selected operating point set. If you export from
the Solution Slice the new data set will contain the current solution at
all operating points.

Recall that the previous example was a single-objective optimization and
therefore only had one solution per operating point. In that case the
optimization results could be exported directly from the Solution Slice,
as there was no choice of solutions to be selected. See “Single-Objective
Optimization” on page 12-6.

In the next tutorial section you will duplicate this NBI optimization example
and alter it to create a sum optimization.
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Sum Optimization
In this exercise you will use a copy of the NBI optimization from the last
example to create a sum optimization.

Up to this point, you have found the optimal values of each objective function
at each point of an operating point set individually. A sum optimization finds
the optimal value of a weighted sum of each objective function over all free
variables simultaneously. The weighted sum is taken over each operating
point in the run, and the weights can be edited.

A sum optimization problem without constraints, for M operating points,
is the same as M individual optimizations; the minimum of the sum is the
same as the sum of the minima.

To illustrate this, consider the following example:

Say the objective function is f(a,b). Consider a to be the free variable and b to
be the fixed variable. To set up a sum optimization, at different values of b,
we want to find [a1, a2, a3 .. aM] which minimizes:

w1*f(a1,b1) + w2*f(a2,b2) + w3*f(a3,b3) + ... + wM*f(aM,bM), [1]

where w1, w2 etc. are the weights.

There are two ways of viewing this problem. It can be viewed as a big
optimization problem in an M-dimensional space for the vector [a1, a2, a3, ..aM]
as shown in [1]. Alternatively, as each element of the sum depends on its
own subset of the free variables, the problem can be written as M separate
optimization problems, as in [2]:

min wi*f(ai,bi) for i=1:M, [2]

Once the M individual problems are solved, the weighted sum can be
constructed to get the answer.

When there are sum constraints present, it is not true that a M-point sum
optimization problem is equivalent to solving M individual optimizations. In
this case, all points must be evaluated together to find the optimal solution
that meets the sum constraints across all of the points.
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In a sum optimization, the objectives are typically sum objectives. You can
use a mixture of point and model sum constraints in a sum optimization. The
following instructions describe these settings.

1 Right-click the Optimization_1 node in the Optimization tree and select
Duplicate Optimization_1.

A copy of the Optimization_1 node called Optimization_2 appears in
the tree. You do not need an existing NBI optimization to create a sum
optimization. This example is used for convenience and also to illustrate
copying optimizations. This feature can be useful when you are trying
different settings to improve your optimizations while keeping previous
attempts for comparison.

You use this copy to create a sum optimization. This means that instead of
performing the optimization at each point individually, the optimization
takes the sum of solutions at all points into consideration. You can apply
different weights to operating points, allowing more flexibility for some
parts of the optimization.

2 Select the node Optimization_2 and select Edit > Rename (or press F2).
Edit the name to read SUM_NBI.

You will edit all the objectives in your existing optimization to be sum
objectives.

3 Double-click TQ_Model (or right-click and select Edit Objective). The
Edit Objective dialog appears.

4 Select Sum Objective from the Objective Type drop-down menu.

You need to set up your new objective.
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5 Select TQ_Model and make sure Maximize is selected. Torque has a strong
correlation with fuel consumption so this sort of problem could be useful for
a fuel consumption study.

6 Click OK to finish editing the objective.

7 Repeat to edit NOXFLOW_Model. Set up a sum objective to minimize
NOXFLOW.

8 You can also edit your constraint to be a sum constraint. You can use a
mixture of point and sum constraints. Double-click NOXFLOW_Model1 and
the Constraint Editor appears.

9 Select Sum Constraint from the Constraint Type drop-down menu, then
select NOXFLOW_Model under Input Model.

10 Edit the Constraint name to NOXFLOW_Constraint to help you later
distinguish it from the NOXFLOW_Model in the Optimization view fixed
variables pane.
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11 Enter 450 in the constraint bound edit box and press Enter. Check the
Constraint description is correct as shown.

Click OK.

12 You want to perform a sum optimization across a series of operating points.
Select Optimization > Convert to Single Run. Look at the change in
the Variable Values panes. Instead of 6 separate runs you now have
one run containing 6 operating points. Number of runs is now 1, and
Number of Values is 6 for all variables (you use these controls to set
the number of operating points within each run). Each solution will be a
sum across all the points in the run.

13 Look in the Fixed Variables pane for the weights columns, last columns on
the right. Enter 5 in the first row (run 1, point 1) for TQ_Model_weights,
NOXFLOW_Model_weights, and NOXFLOW_Constraint_weights, to
weight the first operating point by five, as shown.
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14 Click Set Up Optimization in the toolbar. Change the following
parameters in the Optimization Parameters dialog.

For both Shadow minima and NBI subproblem options:

• Maximum function evaluations — 1000

• Maximum iterations — 200

• Function tolerance — 1e-006

• Variable tolerance — 1e-006

• Constraint tolerance — 1e-006
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Click OK to close the dialog.

15 You have modified your objectives and constraint for a sum optimization,

which is ready to run. Click Run Optimization ( ) in the toolbar.

16 There is a wait notice as the optimization runs. There are no progress
messages as points are evaluated because sum optimizations do not
evaluate points individually.

When the optimization is complete, examine the results at the output node.
Select the Pareto Slice table. Look at the objective and constraint results
for the ten solutions (number of solutions is specified in the Optimization
Parameters dialog). In the Pareto Slice table, negative constraint values
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are within the constraint. Look at the constraint summary view, where the
left and right information corresponds to the constraint inequality; the left
value is the distance from the constraint.

For more information see “Interpreting Sum Optimization Output” in the
CAGE User’s Guide documentation.
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Automated Tradeoff
Once you have set up an optimization you can fill tables in a tradeoff using
automated tradeoff. You can select cells and fill them from the results of an
optimization. The cells you select in the tradeoff table define the operating
point set for the optimization.

Set up a tradeoff as follows (also described in “Setting Up a Tradeoff
Calibration” on page 9-3).

1 Select File > New > Tradeoff.

This takes you to the Tradeoff view. You need to add tables to the tradeoff.

2 Click (Add New Table). This opens the Table Setup dialog.

3 Enter Spark as the table Name.

4 Select L as the Y name and N as the X name.

5 Click Select to open the Select Filling Item dialog.

a Select the radio button to Display variables.

b Click to select SPK.

c Click OK to return to the Table Setup dialog.

6 Leave 10 as the size of the rows and columns (the speed and load axes), and
0 as the initial value, and click OK.

A new Spark table appears in the Tradeoff tree. CAGE has automatically
spaced the normalizers evenly over the ranges of N and L.

7 Click to expand the New_Tradeoff tree and select the Spark table node to
view the new table.

You need to select the cells where you want to apply automated tradeoff.
Create a region within the table:
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1 Highlight a rectangle of cells in the SPK table by clicking and dragging.
Note that a large region can take a very long time to evaluate. Try four
cells to start with.

2 Click (or right-click and select Extrapolation Regions > Add
Selection) to define the region. The cells become light blue.

To use automated tradeoff on the cells in the defined region,

1 Select Inputs > Automated Tradeoff or click the toolbar button .

The Automated Tradeoff dialog appears, showing a list of available
optimizations in your session that are set up and ready to run.

2 Select your Optimization_1 multiobjective optimization to apply to the
tradeoff and click OK.

3 Click OK in the following dialog to optimize only the table cells that are
in the region, rather than all cells.

The automated tradeoff optimization runs. The results appear in the selected
cells in the table, as shown in the example. You could optimize several regions
and then use these results to extrapolate across the whole table.
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Worked Example Optimization

In this section...

“Example Overview” on page 12-44

“Using the Worked Example Optimization” on page 12-45

Example Overview
There is a simple worked example provided to show you what you can do by
modifying the template file to write your own optimizations. This example
demonstrates a simple use of the CAGE optimization feature. The aim of
this example is to obtain values of spark (SPK) and air/fuel ratio (AFR) that
maximize torque at a given speed (N) and load (L). These values could then be
used to fill calibration tables.

An example of a user-defined optimization algorithm is provided.

• To see a description of this algorithm, at the command line type

help mbcweoptimizer

mbcweoptimizer is an example of a user-specified optimization that solves
the following problem:

Maximum TQ over (AFR, SPK) at a given (N, L) point.

The syntax for this example function, mbcweoptimizer, mimics that used in
the Optimization Toolbox™ product.

• To evaluate this at the command line, type this example:

[bestafr, bestspk] = mbcweoptimizer(@(afr, spk)mbcTQ(afr,...
spk, 1000, 0.2))

The optimization finds values of AFR and spark (the free variables) that
give the maximum output from TQ at the values of speed and load (the fixed
variables) that you specified, in this case speed = 1000, load = 0.2, as shown
below.
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bestafr =
12.9167
bestspk =
25

To use this optimization algorithm in CAGE, you need to include the
function in a CAGE optimization function M-file. This worked example
modifies the template provided to show you how to use your own algorithms
within CAGE. You can find detailed information on all the available CAGE
optimization interface functions in “User-Defined Optimization” in the CAGE
documentation.

• To view the worked example M-file, at the command line, type

edit mbcOSworkedexample

The worked example optimization wraps mbcweoptimizer in a function
that can be called by the CAGE optimization feature. When you run your
optimization from CAGE, you can alter the search ranges of the free variables
and the resolution of the search.

The next section, “Using the Worked Example Optimization” on page 12-45,
demonstrates how to use the example within CAGE.

The section “Creating an Optimization from Your Own Algorithm” on page
12-51 is a detailed tutorial example explaining how to incorporate an example
user-defined optimization algorithm into a CAGE optimization function.

Using the Worked Example Optimization
In order to run any optimization, you first need to set up your CAGE session
with a model.

For this example, the CAGE session requires

• A torque model

• A variable dictionary defining required variable ranges and set points (N,
L, AFR, and SPK)
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• A data set defining the (N,L) operating points where you want to run the
optimizer

There is a preconfigured session provided that contains the model, variable
dictionary, and data set.

1 Select File > Open Project and load the file optimworkedexample.cag.
This is in the mbctraining directory.

• The tq model was fitted to the Holliday engine data and exported
from the Model Browser quick start tutorial (also used in the CAGE
feature calibration tutorial). It can be found in tutorial.exm in the
mbctraining directory. To view this model in your current session, click
the Models button in the Data Objects pane. There is also another
model in the session that you will use later.

• You can look at the variables by clicking the Variable Dictionary
button in the Data Objects pane.

• You can look at the operating point set by clicking Data Sets in the Data
Objects pane. Note you can specify fixed variables for optimizations
either directly in the optimization view or import them from a data set
or table.

2 Select File > New > Optimization.

The Optimization Wizard appears.

3 Select WorkedExample, and click Next.

4 Associate each pair of inputs and variables, by clicking afr and A in the
left and right lists, and then click the Select button. Similarly associate
spark with spk. Click Next.
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5 The next screen of the wizard automatically shows the Torque model
selected and Maximize chosen; these are specified in the function. Select
tq in the CAGE model list and click the button to match it with the Torque
optimization model, then click Finish.

CAGE switches to the Optimization view and the new Optimization node
appears in the tree.
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6 If you ran the optimization now it would run at one point, the set point
of all the variables. You use the free and fixed Variable Values panes
to select operating points. You can edit points manually or import them.
Select Optimization > Import From Data Set.

The project file contains a data set with N and L values, and these are
automatically selected. Click OK to import.

Notice 36 rows appear in both fixed and free variable panes, and operating
point values have been imported into the N and L columns in the Fixed
Variables pane. The initial values for A and spark for each point are the
set points in the variable dictionary.

7 Click Run Optimization in the toolbar.
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8 When the optimization completes, the view switches to the new
Optimization_Output node.

The output display should look like the following. The optimization has
found the values of SPK and AFR that give the maximum model value of
torque at each operating point specified. Select different operating points
by clicking in the table: the model plots at the selected operating point
are shown. There is only one solution per operating point, so you cannot
scroll through the solutions.
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For a detailed walk-through of incorporating an example user-defined
optimization algorithm into a CAGE optimization function, see the next
tutorial section, “Creating an Optimization from Your Own Algorithm” on
page 12-51.
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Creating an Optimization from Your Own Algorithm

In this section...

“Process Overview” on page 12-51

“Step 1: Verify the Algorithm” on page 12-53

“Step 2: Create a CAGE Optimization Function” on page 12-55

“Step 3: Define the Optimization Options” on page 12-58

“Step 4: Add the Algorithm to the Optimization Function” on page 12-61

“Step 5: Register Your Optimization Function with CAGE” on page 12-65

“Step 6: Verify Your New Optimization” on page 12-66

Process Overview
The CAGE optimization feature allows you to use your own optimization
algorithms as alternatives to the library routines foptcon, NBI, ga and
patternsearch.

Using an example, this tutorial illustrates how to take an existing
optimization algorithm and implement it as an optimization function for use
in CAGE optimization.

The problem to be solved is the worked example problem:

Maximize torque (TQ) over the free variables (SPK, AFR) over a specified set of
(N, L) points. These points are defined in the data set New_Dataset, which
can be found in the CAGE session optimworkedexample.cag and can be
imported to the fixed variable values pane in the Optimization view.

The torque model to be used is that in /mbctraining/Holliday.mat.

The process steps are:

1 Start with your own algorithm. We will use fminunc from the Optimization
Toolbox™ product as an example.

2 Create a CAGE optimization function.
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3 Define the attributes of your optimization in the CAGE optimization
function.

4 Add your algorithm to the CAGE optimization function.

5 Register your completed optimization function with CAGE.

6 Verify the optimization.

The steps of this tutorial lead you through a series of examples illustrating
how to construct the code to incorporate your own algorithm into an
optimization in CAGE.

Before you begin you must create a working directory.

1 Create a new folder (for example, C:\Optimization_Work). We recommend
that you place this directory outside your MATLAB® folders to avoid
interfering with toolbox files.

2 Copy the following six files from the mbctraining directory into your new
working folder:

currtutoptim.m
mbcOStemplate.m
mbcOStutoptimfunc.m
mbcOStutoptimfunc_s1.m
optimtut.mat
optimtuteg.mat

3 Make sure your new working directory is on the MATLAB path; either
change Current Directory in MATLAB to the new working folder, or
add the folder to the path as follows:

a Select File > Set Path.

b Click Add Folder and browse to your working directory.

c Click OK.

d Click Save.

e Click Close.
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Step 1: Verify the Algorithm
currtutoptim.m is an example file to verify that fminunc solves the worked
example problem. You can try this at the MATLAB command line.

1 To open the algorithm file in the Editor, either enter open currtutoptim.m
at the command line, or if the Current Directory in MATLAB is your new
working folder, select Desktop > Current Directory, then double-click
currtutoptim.m . You should see the following code in the MATLAB editor.
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2 To verify that fminunc solves the worked example problem, type the
following command at the MATLAB prompt:

bestX = currtutoptim

After the progress messages complete the workspace output should resemble
the following:

BestX =
23.768 12.78
18.179 12.78
14.261 12.78
12.014 12.78
11.439 12.78
12.535 12.78
27.477 12.78
21.887 12.78
17.969 12.78
15.722 12.78
15.147 12.78
16.243 12.78
31.185 12.78
25.595 12.78
21.677 12.78
19.43 12.78

18.855 12.78
19.951 12.78
34.893 12.78
29.303 12.78
25.385 12.78
23.138 12.78
22.563 12.78
23.659 12.78
38.601 12.78
33.012 12.78
29.093 12.78
26.847 12.78
26.271 12.78
27.368 12.78
42.309 12.78

12-54



Creating an Optimization from Your Own Algorithm

36.72 12.78
32.802 12.78
30.555 12.78
29.979 12.78
31.075 12.78

The matrix bestX contains the optimal SPK and AFR values that maximize
the MBC model torque (exported from Holliday.mat) at the speed and load
points defined in the matrix data.

fminunc is the example optimization algorithm that you want to transfer to
CAGE for use in the optimization GUI.

This tutorial shows how to make fminunc available for use in the CAGE
optimization feature.

Step 2: Create a CAGE Optimization Function
Any optimization algorithm you want to use in CAGE must be contained in an
optimization function. A CAGE optimization function consists of two sections.

The first section defines the following attributes of the optimization:

• A name for the optimization

• A description of the optimization

• Number of free variables

• Labels for free variables (if required), so the user can match variables in
CAGE to the required algorithm free variables.

• Number of objectives

• Labels for objective functions, so the user can match models in CAGE to
the required algorithm objectives (you can match in CAGE, so labels do not
have to be exact in the optimization function)

• Number of constraints

• Labels for constraints, so the user can match models in CAGE to the
required models in your algorithm constraints

• Number of data sets
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• Labels for data sets, so the user can match data sets in CAGE to the
required variable data for your algorithm

• Any other parameters required by the optimization algorithm

The second section contains the optimization algorithm.

Open mbcOStemplate.m.

You should see the following M-file in the MATLAB editor.
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0	
������

0	
������
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mbcOStemplate.m is an empty CAGE optimization function. The two
(currently empty) sections of the function are labeled above. Note that this
M-file can be used as a template for any optimization function that you write.

Step 3: Define the Optimization Options
The next step is to define the attributes of your optimization (in Section 1
of the template).

Open mbcOStutoptimfunc_s1.m. In this M-file, you can see the optimization
attributes that have been defined.

The following is a code fragment from this file:
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The optimization attributes are passed to CAGE via the cgoptimoptions
object, referenced by options in the code in mbcOStutoptimfunc_s1.m. See
after the table for details of the cgoptimoptions object. The cgoptimoptions
object has a set of functions that set the optimization attributes in CAGE.
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This is where you specify the name, description, free variables, objective
functions, constraints, helper data sets, and optimization parameters for the
optimization.

For detailed information on all the available functions, see “Optimization
Function Reference” in the CAGE documentation. The above code has used
the cgoptimoptions object (options) to set the optimization attributes as
described in the following table.

Look through the code to locate the listed Code Section Where Set for each
attribute to see how each of the optimization options is set up.

Attribute Value
Code Section Where
Set

Optimization Name Tutorial_Optimization Add a name - setName

Description A simple worked example to maximize
torque

Add a description -
setDescription

Number of Free
Variables

Cannot be changed by the user in the
GUI (the mode has been set to 'fixed')

Set up the free
variables -
setFreeVariablesMode

Required Free Variables This function requires two free variables,
labeled 'afr' and 'spk'. The user
matches these free variable labels to
CAGE variables in the Optimization
Wizard.

Set up the free
variables -
addFreeVariables

Number of Objectives Cannot be changed by the user in the
GUI (the mode has been set to 'fixed')

Set up the objective
functions -
setObjectivesMode

Required Objective
functions

This function requires one objective
function, which will be labeled 'Torque'
in the optimization feature. The user
matches this 'Torque' label to a CAGE
model.

Set up the objective
functions -
addObjective

Number of Constraints Cannot be changed by the user in the
GUI (the mode has been set to 'fixed')

Set up the
constraints -
SetConstraintsMode
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Attribute Value
Code Section Where
Set

Required Constraints As the mode is fixed and no constraint
labels have been defined, this
optimization has no linear or nonlinear
constraints.

Set up the
constraints - %There
are no constraints

Number of Helper Data
Sets

Cannot be changed by the user in the
GUI (the mode has been set to 'fixed').
There are no helper data sets for this
example.

Set up the operating
point sets -
setOperatingPointsMode

Optimization
Parameters

This function will allow the user to
change five parameters. These will
be displayed in the Optimization
Parameters dialog box and labelled
Display, Maximum iterations,
Maximum function evaluations,
Variable tolerance, and Function
tolerance.

Set up the
optimization
parameters -
addParameter

When one of your optimizations is created in the CAGE GUI, CAGE first calls
your optimization function to define the attributes of the optimization. The
function call from CAGE has the form

optionsobj = <your_optimization_function>('options', optionsobj)

This is how your optimization function receives the cgoptimoptions object.
Note that your optimization function must support this interface.

Step 4: Add the Algorithm to the Optimization
Function
In this step you complete the optimization function by adding your algorithm.
To do this, a few changes need to be made to the code that calls the algorithm,
as data (for example, free variable values, constants, and so on) will now be
passed to and from CAGE rather than from the MATLAB workspace.
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1 Open mbcOStutoptimfunc.m.

This M-file contains the completed optimization algorithm. The following is
a code fragment from this file.

A single line has been added, namely

optimstore = tutoptimizer(optimstore)

This line calls the modified optimization algorithm. Note the syntax of
the algorithm: it must take the form

optimstore = <your_optimization_algorithm>(optimstore)

2 The subfunction tutoptimizer can be found at the bottom of the
mbcOStutoptimfunc.m file. Scroll down to view the algorithm, modified
for use in CAGE.

optimstore is a cgoptimstore object. This is an interface object that
allows you to get data from and set data in the CAGE optimization
feature. You can now see how the optimstore object is used by comparing
the modified optimization algorithm, tutoptimizer, with the original
algorithm, currtutoptim, for each of the main actions of the algorithm.

Action 1
Get the start conditions (x0) for the free variables.

Original code:

x0 passed in from the MATLAB workspace.

Modified code:

x0 = getInitFreeVal(optimstore);
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In the original algorithm, x0 is passed into the algorithm from the MATLAB
workspace. In CAGE, we invoke the getInitFreeVal function on the
optimstore object to retrieve x0.

Action 2
Perform the optimization (in Section 2 of the template).

Original code (from currtutoptim):

[bestx(i, :), notused1, notused2, OUTPUT(i)] = fminunc(trqfunc,
x0, algoptions);

which calls the following code to evaluate the cost function:

function tq = trqfunc(x)

% Evaluate torque. Note x = [SPK, AFR]
tq = EvalModel(TQMOD, [x(1), N(i), L(i), x(2)]);

% Maximising torque, so need to return -tq
tq = -tq;

end

Modified code:

[bestx, unused, exitFlag, OUTPUT] = fminunc(@trqfunc_new,
x0, algoptions);

which calls the following code to evaluate the cost function:

function y = trqfunc_new(x)
% Evaluate the torque objective function
y = -evaluate(optimstore, x);

end

In performing the algorithm, the only difference between the original and
modified code is how the objective function is evaluated. The original
algorithm requires the objective function (a Model-Based Calibration
Toolbox™ model for torque) to be loaded in and evaluated as required. In the
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modified algorithm the objective function (torque) is evaluated by invoking
the evaluate function on the optimstore object. Note that the inputs to
the torque model are passed in to the evaluate function as shown in the
following table.

Original Input Input to Evaluate Function

S X(1)

A X(2)

Action 3
Retrieve output data.

Original code:

Optimal free variable settings are returned through the variable bestX in
currtutoptim.

Modified code:

% Write results to the optimstore
optimstore = setFreeVariables(optimstore, bestx);

% Set termination message
termMsg = OUTPUT.message;
OUTPUT = rmfield(OUTPUT, 'message');

% Set all information in the optimstore and leave
optimstore = setExitStatus(optimstore, exitFlag, termMsg);
optimstore = setOutput(optimstore, OUTPUT);

In the modified algorithm, the results need to be sent back to the CAGE
optimization feature and not the MATLAB workspace. To do this, optimization
results are set in the optimstore object, which is then returned to CAGE.
There are three functions you should invoke on the optimstore object to
return optimization results to CAGE:

• setFreeVariables — Returns the optimal free variable values to CAGE
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• setExitStatus — Returns an integer that indicates whether the algorithm
terminated successfully or not (positive is successful). This sets the
termination message.

• setOutput — Returns any diagnostic information on the algorithm to
CAGE

Step 5: Register Your Optimization Function with
CAGE
The worked example provided is preregistered so you can see it as an option
in the Optimization Wizard when setting up a new optimization. You must
register new functions before you can use them. When you have modified the
template to create your own optimization function, as in this example, you
must register it with the Model-Based Calibration Toolbox product in order
to use the function in CAGE. Once you have checked in your optimization
function it appears in the Optimization Wizard.

1 In CAGE, select File > Preferences.

The CAGE Preferences dialog appears.

2 Click the Optimization tab and click Add to browse to your M-file.

3 Locate mbcOStutoptimfunc.m file (in the working directory you created)
and click Open.

This registers the optimization function with CAGE.
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4 You can now test the function by clicking Test. This is a good check for any
syntax errors in your optimization function. This is a very useful function
when you use your own functions; if anything is incorrectly set up the test
results will tell you where to start correcting your function.

You could see an example of this by saving a copy of the worked example
file and changing one of the variable names (such as afr) to a number. Try
to check this altered function into CAGE, and the Test button will return
an informative error specifying the line you have altered.

5 Click OK to leave the CAGE Preferences dialog. If the optimization
function tested successfully, it is registered as an optimization function that
can be used in CAGE, and appears in the Optimization Wizard.

Step 6: Verify Your New Optimization
To verify the algorithm we set up a CAGE session to run the optimization that
was performed in step 1. For this example, the CAGE session has already
been set up. Follow the steps below to run the tutorial optimization in CAGE.

1 In CAGE, select File > Open Project and load the file
optimworkedexample.cag (unless you already have this project open). This
project is in the mbctraining directory.

2 Select File > New > Optimization.
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3 The newly registered optimization appears in the list of algorithm names.
Select Tutorial_Optimization from the list. Click Next.

4 Match the variables as shown.

Click Next.
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5 Match the Torque model to the tuttq CAGE model as shown.

Click Finish.

6 If you ran the optimization now it would run at one point, the set point of
all the variables. You use the free and fixed Variable Values panes to
select operating points. You can edit points manually or import them. Do
one of the following:

• If you have the previous worked example optimization in your current
session, in the optimization view increase the Number of runs to 36,
and then copy and paste the fixed variable values from the previous
optimization.

• If you do not have the previous optimization in your session, select
Optimization > Import From Data Set. The project file contains
a data set with N and L values, and these are automatically selected.
Click OK to import.

Now you should have 36 rows in both fixed and free variable panes, and
operating point values in the N and L columns in the Fixed Variables
pane. The initial values for A and spark for each point are the set points
in the variable dictionary.

7 Select Optimization > Set Up. The Optimization Parameters dialog box
appears. Observe the five parameters defined in the tutorial optimization
script.
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Change the variable and function tolerances to 1e-4, and click OK to
close the dialog box.

8 Run the optimization and view the results. The output data matrix should
resemble the following. Note that the optimal values for A and SPK are
very similar to those from the original algorithm.
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A Examples

Case Studies
Chapter 2, “Gasoline Engine Calibration Case Study”
Chapter 3, “Diesel Engine Calibration Case Study”

Commandline MBC
Chapter 4, “Command-Line Interface to the Model-Based Calibration
Toolbox™ Product”

Model Browser
Chapter 5, “Tutorial: Model Quickstart ”
Chapter 6, “Tutorial: Design of Experiment”
Chapter 7, “Tutorial: Data Editor”

CAGE
Chapter 8, “Tutorial: Feature Calibration”
Chapter 9, “Tutorial: Tradeoff Calibration”
Chapter 10, “Tutorial: Data Sets”
Chapter 11, “Tutorial: Filling Tables from Data”
Chapter 12, “Tutorial: Optimization and Automated Tradeoff”
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